How different immersive environments affect intracortical brain computer interfaces.

Ariana F Tortolani, Nicolas G Kunigk, Anton R Sobinov, Michael L Boninger, Sliman J Bensmaia, Jennifer L Collinger, Nicholas G Hatsopoulos, John E Downey
{"title":"How different immersive environments affect intracortical brain computer interfaces.","authors":"Ariana F Tortolani, Nicolas G Kunigk, Anton R Sobinov, Michael L Boninger, Sliman J Bensmaia, Jennifer L Collinger, Nicholas G Hatsopoulos, John E Downey","doi":"10.1088/1741-2552/adb078","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. As brain-computer interface (BCI) research advances, many new applications are being developed. Tasks can be performed in different virtual environments, and whether a BCI user can switch environments seamlessly will influence the ultimate utility of a clinical device.<i>Approach</i>. Here we investigate the importance of the immersiveness of the virtual environment used to train BCI decoders on the resulting decoder and its generalizability between environments. Two participants who had intracortical electrodes implanted in their precentral gyrus used a BCI to control a virtual arm, both viewed immersively through virtual reality goggles and at a distance on a flat television monitor.<i>Main results</i>. Each participant performed better with a decoder trained and tested in the environment they had used the most prior to the study, one for each environment type. The neural tuning to the desired movement was minimally influenced by the immersiveness of the environment. Finally, in further testing with one of the participants, we found that decoders trained in one environment generalized well to the other environment, but the order in which the environments were experienced within a session mattered.<i>Significance</i>. Overall, experience with an environment was more influential on performance than the immersiveness of the environment, but BCI performance generalized well after accounting for experience.Clinical Trial: NCT01894802.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11809280/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adb078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective. As brain-computer interface (BCI) research advances, many new applications are being developed. Tasks can be performed in different virtual environments, and whether a BCI user can switch environments seamlessly will influence the ultimate utility of a clinical device.Approach. Here we investigate the importance of the immersiveness of the virtual environment used to train BCI decoders on the resulting decoder and its generalizability between environments. Two participants who had intracortical electrodes implanted in their precentral gyrus used a BCI to control a virtual arm, both viewed immersively through virtual reality goggles and at a distance on a flat television monitor.Main results. Each participant performed better with a decoder trained and tested in the environment they had used the most prior to the study, one for each environment type. The neural tuning to the desired movement was minimally influenced by the immersiveness of the environment. Finally, in further testing with one of the participants, we found that decoders trained in one environment generalized well to the other environment, but the order in which the environments were experienced within a session mattered.Significance. Overall, experience with an environment was more influential on performance than the immersiveness of the environment, but BCI performance generalized well after accounting for experience.Clinical Trial: NCT01894802.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信