{"title":"EEG correlates of acquiring race driving skills.","authors":"M Sultana, L Gheorghe, S Perdikis","doi":"10.1088/1741-2552/adb077","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Race driving is a complex motor task that involves multiple concurrent cognitive processes in different brain regions coordinated to maintain and optimize speed and control. Delineating the neuroplasticity accompanying the acquisition of complex and fine motor skills such as racing is crucial to elucidate how these are gradually encoded in the brain and inform new training regimes. This study aims, first, to identify the neural correlates of learning to drive a racing car using non-invasive electroencephalography (EEG) imaging and longitudinal monitoring. Second, we gather evidence on the potential role of transcranial direct current stimulation (tDCS) in enhancing the training outcome of race drivers.<i>Approach</i>. We collected and analyzed multimodal experimental data, including drivers' EEG and telemetry from a driving simulator to identify neuromarkers of race driving proficiency and assess the potential to improve training through anodal tDCS.<i>Main results</i>. Our findings indicate that theta-band EEG rhythms and alpha-band effective functional connectivity between frontocentral and occipital cortical areas are significant neuromarkers for acquiring racing skills. We also observed signs of a potential tDCS effect in accelerating the learning process.<i>Significance</i>These results provide a foundation for future research to develop innovative race-driving training protocols using neurotechnology.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adb077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective. Race driving is a complex motor task that involves multiple concurrent cognitive processes in different brain regions coordinated to maintain and optimize speed and control. Delineating the neuroplasticity accompanying the acquisition of complex and fine motor skills such as racing is crucial to elucidate how these are gradually encoded in the brain and inform new training regimes. This study aims, first, to identify the neural correlates of learning to drive a racing car using non-invasive electroencephalography (EEG) imaging and longitudinal monitoring. Second, we gather evidence on the potential role of transcranial direct current stimulation (tDCS) in enhancing the training outcome of race drivers.Approach. We collected and analyzed multimodal experimental data, including drivers' EEG and telemetry from a driving simulator to identify neuromarkers of race driving proficiency and assess the potential to improve training through anodal tDCS.Main results. Our findings indicate that theta-band EEG rhythms and alpha-band effective functional connectivity between frontocentral and occipital cortical areas are significant neuromarkers for acquiring racing skills. We also observed signs of a potential tDCS effect in accelerating the learning process.SignificanceThese results provide a foundation for future research to develop innovative race-driving training protocols using neurotechnology.