Temperature and light dual-responsive hydrogels for anti-inflammation and wound repair monitoring.

Ji Jiang, Yuan Tian, Xiaoyang Wu, Mingze Zeng, Chengheng Wu, Dan Wei, Hongrong Luo, Jing Sun, Jie Ding, Hongsong Fan
{"title":"Temperature and light dual-responsive hydrogels for anti-inflammation and wound repair monitoring.","authors":"Ji Jiang, Yuan Tian, Xiaoyang Wu, Mingze Zeng, Chengheng Wu, Dan Wei, Hongrong Luo, Jing Sun, Jie Ding, Hongsong Fan","doi":"10.1039/d4tb02555e","DOIUrl":null,"url":null,"abstract":"<p><p>Wound healing is a complex and dynamic biological process that requires meticulous management to ensure optimal outcomes. Traditional wound dressings, such as gauze and bandages, although commonly used, often fall short in their frequent need for replacement, lack of real-time monitoring and absence of anti-inflammatory and antibacterial properties, which can lead to increased risk of infection and delayed healing. Here, we address these limitations by introducing an innovative hydrogel dressing, named PHDNN6, to combine wireless Bluetooth temperature monitoring and light-triggered nitric oxide (NO) release to enhance wound healing and management. The PHDNN6 hydrogel is based on a poly(<i>N</i>-isopropylacrylamide) (PNIPAM) matrix, integrated with methacrylated and dopamine-grafted hyaluronic acid (HA-MA-DA), which allows the dressing to be highly responsive to changes in wound temperature, enabling continuous and real-time monitoring of the wound microenvironment wirelessly. Besides, PHDNN6 is embedded with photothermal polydopamine nanoparticles (PDA NPs) that are loaded with a NO donor, <i>N</i>,<i>N</i>'-di-<i>sec</i>-butyl-<i>N</i>,<i>N</i>'-dinitroso-1,4-phenylenediamine (BNN6). When exposed to near-infrared (NIR) laser irradiation, these PDA@BNN6 nanoparticles release NO to provide potent antibacterial and anti-inflammatory effects. The integration of continuous wireless temperature monitoring with NO release within a single hydrogel dressing represents a significant advancement in clinical wound care. This dual-functional platform not only provides real-time diagnostic capabilities but also offers therapeutic interventions to manage wound infections and promote tissue regeneration. Our research highlights the potential of PHDNN6 to revolutionize wound management by offering a comprehensive solution that addresses both the diagnostic and therapeutic needs in wound healing.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4tb02555e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wound healing is a complex and dynamic biological process that requires meticulous management to ensure optimal outcomes. Traditional wound dressings, such as gauze and bandages, although commonly used, often fall short in their frequent need for replacement, lack of real-time monitoring and absence of anti-inflammatory and antibacterial properties, which can lead to increased risk of infection and delayed healing. Here, we address these limitations by introducing an innovative hydrogel dressing, named PHDNN6, to combine wireless Bluetooth temperature monitoring and light-triggered nitric oxide (NO) release to enhance wound healing and management. The PHDNN6 hydrogel is based on a poly(N-isopropylacrylamide) (PNIPAM) matrix, integrated with methacrylated and dopamine-grafted hyaluronic acid (HA-MA-DA), which allows the dressing to be highly responsive to changes in wound temperature, enabling continuous and real-time monitoring of the wound microenvironment wirelessly. Besides, PHDNN6 is embedded with photothermal polydopamine nanoparticles (PDA NPs) that are loaded with a NO donor, N,N'-di-sec-butyl-N,N'-dinitroso-1,4-phenylenediamine (BNN6). When exposed to near-infrared (NIR) laser irradiation, these PDA@BNN6 nanoparticles release NO to provide potent antibacterial and anti-inflammatory effects. The integration of continuous wireless temperature monitoring with NO release within a single hydrogel dressing represents a significant advancement in clinical wound care. This dual-functional platform not only provides real-time diagnostic capabilities but also offers therapeutic interventions to manage wound infections and promote tissue regeneration. Our research highlights the potential of PHDNN6 to revolutionize wound management by offering a comprehensive solution that addresses both the diagnostic and therapeutic needs in wound healing.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信