Liposome-encapsulated lambda exonuclease-based amplification system for enhanced detection of miRNA in platelet-derived microvesicles of non-small cell lung cancer†
Mohamed Aimene Benariba, Kanza Hannachi, Sanxia Wang, Yuting Zhang, Xiaoli Wang, Li Wang and Nandi Zhou
{"title":"Liposome-encapsulated lambda exonuclease-based amplification system for enhanced detection of miRNA in platelet-derived microvesicles of non-small cell lung cancer†","authors":"Mohamed Aimene Benariba, Kanza Hannachi, Sanxia Wang, Yuting Zhang, Xiaoli Wang, Li Wang and Nandi Zhou","doi":"10.1039/D4TB02621G","DOIUrl":null,"url":null,"abstract":"<p >Platelet-derived microvesicles (PMVs) and their encapsulated microRNAs (miRNAs) hold immense potential as biomarkers for early non-small cell lung cancer (NSCLC) diagnosis. This study presents a pioneering liposome-based approach for enhanced miRNA detection within PMVs, employing a lambda exonuclease (λ EXO)-based amplification system encapsulated in immunoliposomes. The platform exploits the novel catalytic functionality of λ EXO, demonstrating its unprecedented capability to catalyze RNA–DNA hybrid substrates. The λ EXO-based amplification system exhibited high sensitivity and specificity in detecting miRNA-21, a key miRNA associated with NSCLC, demonstrating a limit of detection (LOD) of 33.11 fg mL<small><sup>−1</sup></small>. The system was successfully encapsulated within liposomes, which were then functionalized with CD41 antibody to facilitate targeted delivery and fusion with PMVs. The results reveal a significant difference in miRNA-21 levels between PMVs from NSCLC patients and healthy individuals, with a 2.06-fold higher abundance observed in NSCLC patients. This research presents a significant technological advancement in miRNA detection, paving the way for improved early diagnosis and personalized medicine approaches.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 8","pages":" 2666-2673"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02621g","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Platelet-derived microvesicles (PMVs) and their encapsulated microRNAs (miRNAs) hold immense potential as biomarkers for early non-small cell lung cancer (NSCLC) diagnosis. This study presents a pioneering liposome-based approach for enhanced miRNA detection within PMVs, employing a lambda exonuclease (λ EXO)-based amplification system encapsulated in immunoliposomes. The platform exploits the novel catalytic functionality of λ EXO, demonstrating its unprecedented capability to catalyze RNA–DNA hybrid substrates. The λ EXO-based amplification system exhibited high sensitivity and specificity in detecting miRNA-21, a key miRNA associated with NSCLC, demonstrating a limit of detection (LOD) of 33.11 fg mL−1. The system was successfully encapsulated within liposomes, which were then functionalized with CD41 antibody to facilitate targeted delivery and fusion with PMVs. The results reveal a significant difference in miRNA-21 levels between PMVs from NSCLC patients and healthy individuals, with a 2.06-fold higher abundance observed in NSCLC patients. This research presents a significant technological advancement in miRNA detection, paving the way for improved early diagnosis and personalized medicine approaches.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices