Liposome-encapsulated lambda exonuclease-based amplification system for enhanced detection of miRNA in platelet-derived microvesicles of non-small cell lung cancer†

IF 6.1 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Mohamed Aimene Benariba, Kanza Hannachi, Sanxia Wang, Yuting Zhang, Xiaoli Wang, Li Wang and Nandi Zhou
{"title":"Liposome-encapsulated lambda exonuclease-based amplification system for enhanced detection of miRNA in platelet-derived microvesicles of non-small cell lung cancer†","authors":"Mohamed Aimene Benariba, Kanza Hannachi, Sanxia Wang, Yuting Zhang, Xiaoli Wang, Li Wang and Nandi Zhou","doi":"10.1039/D4TB02621G","DOIUrl":null,"url":null,"abstract":"<p >Platelet-derived microvesicles (PMVs) and their encapsulated microRNAs (miRNAs) hold immense potential as biomarkers for early non-small cell lung cancer (NSCLC) diagnosis. This study presents a pioneering liposome-based approach for enhanced miRNA detection within PMVs, employing a lambda exonuclease (λ EXO)-based amplification system encapsulated in immunoliposomes. The platform exploits the novel catalytic functionality of λ EXO, demonstrating its unprecedented capability to catalyze RNA–DNA hybrid substrates. The λ EXO-based amplification system exhibited high sensitivity and specificity in detecting miRNA-21, a key miRNA associated with NSCLC, demonstrating a limit of detection (LOD) of 33.11 fg mL<small><sup>−1</sup></small>. The system was successfully encapsulated within liposomes, which were then functionalized with CD41 antibody to facilitate targeted delivery and fusion with PMVs. The results reveal a significant difference in miRNA-21 levels between PMVs from NSCLC patients and healthy individuals, with a 2.06-fold higher abundance observed in NSCLC patients. This research presents a significant technological advancement in miRNA detection, paving the way for improved early diagnosis and personalized medicine approaches.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 8","pages":" 2666-2673"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02621g","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Platelet-derived microvesicles (PMVs) and their encapsulated microRNAs (miRNAs) hold immense potential as biomarkers for early non-small cell lung cancer (NSCLC) diagnosis. This study presents a pioneering liposome-based approach for enhanced miRNA detection within PMVs, employing a lambda exonuclease (λ EXO)-based amplification system encapsulated in immunoliposomes. The platform exploits the novel catalytic functionality of λ EXO, demonstrating its unprecedented capability to catalyze RNA–DNA hybrid substrates. The λ EXO-based amplification system exhibited high sensitivity and specificity in detecting miRNA-21, a key miRNA associated with NSCLC, demonstrating a limit of detection (LOD) of 33.11 fg mL−1. The system was successfully encapsulated within liposomes, which were then functionalized with CD41 antibody to facilitate targeted delivery and fusion with PMVs. The results reveal a significant difference in miRNA-21 levels between PMVs from NSCLC patients and healthy individuals, with a 2.06-fold higher abundance observed in NSCLC patients. This research presents a significant technological advancement in miRNA detection, paving the way for improved early diagnosis and personalized medicine approaches.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry B
Journal of Materials Chemistry B MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.30%
发文量
866
期刊介绍: Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive: Antifouling coatings Biocompatible materials Bioelectronics Bioimaging Biomimetics Biomineralisation Bionics Biosensors Diagnostics Drug delivery Gene delivery Immunobiology Nanomedicine Regenerative medicine & Tissue engineering Scaffolds Soft robotics Stem cells Therapeutic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信