Pulsating Drought and Insect Herbivory Cause Differential Effects on Soybean (Glycine max) Genotypes That Vary in Canopy Wilting Speed.

Q3 Agricultural and Biological Sciences
Plant-environment interactions (Hoboken, N.J.) Pub Date : 2025-01-30 eCollection Date: 2025-02-01 DOI:10.1002/pei3.70028
Jessica Ayala, Manish Gautam, Adriana Peissel, Justin George, Rupesh Kariyat
{"title":"Pulsating Drought and Insect Herbivory Cause Differential Effects on Soybean (<i>Glycine max</i>) Genotypes That Vary in Canopy Wilting Speed.","authors":"Jessica Ayala, Manish Gautam, Adriana Peissel, Justin George, Rupesh Kariyat","doi":"10.1002/pei3.70028","DOIUrl":null,"url":null,"abstract":"<p><p>As a result of climate change, global temperatures are increasing, and water scarcity is on the rise. Soybean [<i>Glycine max</i> (<i>L.</i>) Merr] is one of the most important crops in the world due to its importance as food and feed. One of the major limiting factors for soybean production is drought, which can cause up to 80% reduction in yield. Therefore, growers and plant breeders are turning to soybean accessions that demonstrate better water use efficiency (WUE). However, in addition to drought, insect herbivory by soybean looper (<i>Chrysodeixis includens,</i> SBL) and fall armyworm (<i>Spodoptera frugiperda</i>, FAW) can also reduce soybean yield by feeding on foliar and floral organs. Using soybean accessions that differ in their wilting speed, we examined the relationship between physiological traits associated with WUE, and how they affect both herbivore and host plant growth and development. Results showed that both fast- and slow-wilting genotypes displayed strong overcompensation in terms of growth and development, but slow-wilting genotypes produced higher-quality pods and seeds. Regardless of treatment effects, FAW fed at a significantly higher rate than SBL despite being less specialized to feed on soybeans. While fast-wilting plants produced more pods than slow-wilting plants regardless of treatment, slow-wilting plants produced heavier pods with larger and heavier seeds. Collectively, we show that despite fast-wilting plants overcompensating in pod production and growth traits, slow-wilting plants may still be better fit through seed functions.</p>","PeriodicalId":74457,"journal":{"name":"Plant-environment interactions (Hoboken, N.J.)","volume":"6 1","pages":"e70028"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11781298/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant-environment interactions (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pei3.70028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

As a result of climate change, global temperatures are increasing, and water scarcity is on the rise. Soybean [Glycine max (L.) Merr] is one of the most important crops in the world due to its importance as food and feed. One of the major limiting factors for soybean production is drought, which can cause up to 80% reduction in yield. Therefore, growers and plant breeders are turning to soybean accessions that demonstrate better water use efficiency (WUE). However, in addition to drought, insect herbivory by soybean looper (Chrysodeixis includens, SBL) and fall armyworm (Spodoptera frugiperda, FAW) can also reduce soybean yield by feeding on foliar and floral organs. Using soybean accessions that differ in their wilting speed, we examined the relationship between physiological traits associated with WUE, and how they affect both herbivore and host plant growth and development. Results showed that both fast- and slow-wilting genotypes displayed strong overcompensation in terms of growth and development, but slow-wilting genotypes produced higher-quality pods and seeds. Regardless of treatment effects, FAW fed at a significantly higher rate than SBL despite being less specialized to feed on soybeans. While fast-wilting plants produced more pods than slow-wilting plants regardless of treatment, slow-wilting plants produced heavier pods with larger and heavier seeds. Collectively, we show that despite fast-wilting plants overcompensating in pod production and growth traits, slow-wilting plants may still be better fit through seed functions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信