Formation and evaluation of doxorubicin and cromoglycate metal-organic framework for anti-cancer activity.

Nanomedicine (London, England) Pub Date : 2025-03-01 Epub Date: 2025-01-31 DOI:10.1080/17435889.2025.2459059
Ebaa Abu Saleem, Zainab Lafi, Naeem Shalan, Walhan Alshaer, Imad Hamadneh
{"title":"Formation and evaluation of doxorubicin and cromoglycate metal-organic framework for anti-cancer activity.","authors":"Ebaa Abu Saleem, Zainab Lafi, Naeem Shalan, Walhan Alshaer, Imad Hamadneh","doi":"10.1080/17435889.2025.2459059","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>We develop and evaluate copper-based metal-organic frameworks (Cu-MOFs) incorporating cromolyn as a linker to enhance structural stability, drug delivery efficiency, and therapeutic potential, particularly for breast cancer treatment.</p><p><strong>Materials & methods: </strong>Two Cu-MOF formulations were synthesized: Cu-MOFs-BDC-DOX (using terephthalic acid) and Cu-MOFs-CROMO-DOX (using cromolyn as a linker). Characterization was performed using SEM/TEM for morphology, and FTIR, XRD, and TGA to confirm structural integrity. Drug encapsulation efficiency and release profiles were assessed, followed by in vitro cytotoxicity, cell migration, and colony formation assays using MDA-MB-231 breast cancer cells.</p><p><strong>Results: </strong>Both formulations demonstrated a high encapsulation efficiency (83-91%) and sustained drug release over 48 h at pH 7.4. Cu-MOFs-CROMO-DOX exhibited superior cytotoxicity with an IC50 of 0.88 ± 0.07 µM compared to 7.1 ± 0.11 µM for Cu-MOFs-BDC-DOX. Both formulations inhibit cancer cell migration and colony formation in a dose-dependent manner.</p><p><strong>Conclusions: </strong>The Cu-MOFs-CROMO-DOX formulation demonstrated enhanced therapeutic potential, outperforming its counterpart in targeting breast cancer cells. This study highlights the promise of MOF-based nanocarriers in overcoming the limitations of conventional chemotherapy, offering a pathway to more effective and targeted cancer treatments with reduced side effects.</p>","PeriodicalId":74240,"journal":{"name":"Nanomedicine (London, England)","volume":" ","pages":"467-479"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875491/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine (London, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17435889.2025.2459059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: We develop and evaluate copper-based metal-organic frameworks (Cu-MOFs) incorporating cromolyn as a linker to enhance structural stability, drug delivery efficiency, and therapeutic potential, particularly for breast cancer treatment.

Materials & methods: Two Cu-MOF formulations were synthesized: Cu-MOFs-BDC-DOX (using terephthalic acid) and Cu-MOFs-CROMO-DOX (using cromolyn as a linker). Characterization was performed using SEM/TEM for morphology, and FTIR, XRD, and TGA to confirm structural integrity. Drug encapsulation efficiency and release profiles were assessed, followed by in vitro cytotoxicity, cell migration, and colony formation assays using MDA-MB-231 breast cancer cells.

Results: Both formulations demonstrated a high encapsulation efficiency (83-91%) and sustained drug release over 48 h at pH 7.4. Cu-MOFs-CROMO-DOX exhibited superior cytotoxicity with an IC50 of 0.88 ± 0.07 µM compared to 7.1 ± 0.11 µM for Cu-MOFs-BDC-DOX. Both formulations inhibit cancer cell migration and colony formation in a dose-dependent manner.

Conclusions: The Cu-MOFs-CROMO-DOX formulation demonstrated enhanced therapeutic potential, outperforming its counterpart in targeting breast cancer cells. This study highlights the promise of MOF-based nanocarriers in overcoming the limitations of conventional chemotherapy, offering a pathway to more effective and targeted cancer treatments with reduced side effects.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信