{"title":"Sources of Microstructure in Mammalian Cochlear Responses.","authors":"James B Dewey","doi":"10.1007/s10162-025-00974-5","DOIUrl":null,"url":null,"abstract":"<p><p>Quasiperiodic fluctuations with frequency are observed in a variety of responses that either originate from or strongly depend on the cochlea's active mechanics. These spectral microstructures are unique and stable features of individual ears and have been most thoroughly studied in behavioral hearing thresholds and otoacoustic emissions (OAEs). While the exact morphology of the microstructure patterns may differ across measurement types, the patterns are interrelated and are thought to depend on common mechanisms. This review summarizes the characteristics and proposed origins of the microstructures observed in behavioral and OAE responses, as well as other mechanical and electrophysiological responses of the mammalian cochlea. Throughout, the work of Glenis Long and colleagues is highlighted. Long contributed greatly to our understanding of microstructure and its perceptual consequences, as well as to the development of techniques for reducing the impact of microstructure on OAE-based assays of cochlear function.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jaro-Journal of the Association for Research in Otolaryngology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10162-025-00974-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Quasiperiodic fluctuations with frequency are observed in a variety of responses that either originate from or strongly depend on the cochlea's active mechanics. These spectral microstructures are unique and stable features of individual ears and have been most thoroughly studied in behavioral hearing thresholds and otoacoustic emissions (OAEs). While the exact morphology of the microstructure patterns may differ across measurement types, the patterns are interrelated and are thought to depend on common mechanisms. This review summarizes the characteristics and proposed origins of the microstructures observed in behavioral and OAE responses, as well as other mechanical and electrophysiological responses of the mammalian cochlea. Throughout, the work of Glenis Long and colleagues is highlighted. Long contributed greatly to our understanding of microstructure and its perceptual consequences, as well as to the development of techniques for reducing the impact of microstructure on OAE-based assays of cochlear function.
期刊介绍:
JARO is a peer-reviewed journal that publishes research findings from disciplines related to otolaryngology and communications sciences, including hearing, balance, speech and voice. JARO welcomes submissions describing experimental research that investigates the mechanisms underlying problems of basic and/or clinical significance.
Authors are encouraged to familiarize themselves with the kinds of papers carried by JARO by looking at past issues. Clinical case studies and pharmaceutical screens are not likely to be considered unless they reveal underlying mechanisms. Methods papers are not encouraged unless they include significant new findings as well. Reviews will be published at the discretion of the editorial board; consult the editor-in-chief before submitting.