{"title":"Artificial intelligent based control strategy for reach and grasp of multi-objects using brain-controlled robotic arm system.","authors":"Kerlin Sara Wilson, K K Saravanan","doi":"10.1080/0954898X.2025.2453620","DOIUrl":null,"url":null,"abstract":"<p><p>Brain-controlled robotic arm systems are designed to provide a method of communication and control for individuals with limited mobility or communication abilities. These systems can be beneficial for people who have suffered from a spinal cord injury, stroke, or neurological disease that affects their motor abilities. The ability of a person to control a robotic arm to reach and grasp multiple objects using their brain signals. This technology involves the use of an electroencephalogram (EEG) cap that captures the electrical activity in the user's brain, which is then processed by an artificial intelligent to translate it into commands that control the movements of the robotic arm. With this technology, individuals who are unable to move their limbs due to paralysis or other conditions can still perform daily activities such as feeding themselves, drinking from a glass, or grasping objects. In this paper, we propose an artificial intelligent-based control strategy for reach and grasp of multi-objects using brain-controlled robotic arm system. The proposed control strategy consists of threefold process: feature extraction, feature optimization, and control strategy classification. Initially, we design an improved ResNet pre-trained architecture for deep feature extraction from the given EEG signal.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-29"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2025.2453620","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Brain-controlled robotic arm systems are designed to provide a method of communication and control for individuals with limited mobility or communication abilities. These systems can be beneficial for people who have suffered from a spinal cord injury, stroke, or neurological disease that affects their motor abilities. The ability of a person to control a robotic arm to reach and grasp multiple objects using their brain signals. This technology involves the use of an electroencephalogram (EEG) cap that captures the electrical activity in the user's brain, which is then processed by an artificial intelligent to translate it into commands that control the movements of the robotic arm. With this technology, individuals who are unable to move their limbs due to paralysis or other conditions can still perform daily activities such as feeding themselves, drinking from a glass, or grasping objects. In this paper, we propose an artificial intelligent-based control strategy for reach and grasp of multi-objects using brain-controlled robotic arm system. The proposed control strategy consists of threefold process: feature extraction, feature optimization, and control strategy classification. Initially, we design an improved ResNet pre-trained architecture for deep feature extraction from the given EEG signal.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.