A numerical approach to model and analyse geometric characteristics of a grey-headed albatross aerofoil in flight.

IF 3 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Alexander Ernest Winter, Janine Schoombie, Lelanie Smith
{"title":"A numerical approach to model and analyse geometric characteristics of a grey-headed albatross aerofoil in flight.","authors":"Alexander Ernest Winter, Janine Schoombie, Lelanie Smith","doi":"10.1088/1748-3190/adaff4","DOIUrl":null,"url":null,"abstract":"<p><p>Limited research exists on the 3D geometric models and as a consequence the aerodynamic characteristics of the grey-headed albatross (GHA). Despite existing methods for extracting bird wing cross-sections, few studies consider deflections due to aerodynamic pressure. With the GHA known for its exceptional flight speed and purported wing-lock mechanism, it offers a valuable subject for studying fixed-wing aerodynamics in nature. This study aims to develop and validate a numerical approach to estimate the GHA's wing cross-section in flight. The PARSEC method is combined with a scanned 3D point cloud of a dried GHA wing to create a 3D model and analyse an averaged aerofoil section. Using a pseudo-2D computational fluid dynamics model, the study explores passive morphing of bird wings due to aerodynamic pressure. Results show that the aerofoil morphs to achieve maximum potential aerodynamic efficiency at a Reynolds number of2×105, decreasing in camber. The maximum lift-to-drag ratio ((CL/CD)max) increases from 3 to 44, primarily due to pressure drag reduction. However, the lack of comparison to true bird geometry in flight remains a limitation. Future research should compare the predicted morphing with actual bird specimens in flight.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/adaff4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Limited research exists on the 3D geometric models and as a consequence the aerodynamic characteristics of the grey-headed albatross (GHA). Despite existing methods for extracting bird wing cross-sections, few studies consider deflections due to aerodynamic pressure. With the GHA known for its exceptional flight speed and purported wing-lock mechanism, it offers a valuable subject for studying fixed-wing aerodynamics in nature. This study aims to develop and validate a numerical approach to estimate the GHA's wing cross-section in flight. The PARSEC method is combined with a scanned 3D point cloud of a dried GHA wing to create a 3D model and analyse an averaged aerofoil section. Using a pseudo-2D computational fluid dynamics model, the study explores passive morphing of bird wings due to aerodynamic pressure. Results show that the aerofoil morphs to achieve maximum potential aerodynamic efficiency at a Reynolds number of2×105, decreasing in camber. The maximum lift-to-drag ratio ((CL/CD)max) increases from 3 to 44, primarily due to pressure drag reduction. However, the lack of comparison to true bird geometry in flight remains a limitation. Future research should compare the predicted morphing with actual bird specimens in flight.

用数值方法模拟和分析了灰头信天翁翼型在飞行中的几何特性。
目前对灰头信天翁的三维几何模型和气动特性研究有限。尽管已有的方法可以提取鸟类的机翼截面,但很少有研究考虑气动压力引起的偏转。由于GHA以其卓越的飞行速度和据称的翼锁机制而闻名,它为研究固定翼空气动力学提供了一个有价值的主题。本研究旨在发展并验证一种估算飞行中GHA机翼横截面的数值方法。PARSEC方法与干燥GHA机翼的扫描3D点云相结合,创建3D模型并分析平均翼型截面。利用拟二维计算流体动力学模型,研究了鸟类翅膀在气动压力作用下的被动变形。结果表明,在雷诺数为2 × 105时,翼型的变形达到最大的潜在气动效率,随着弧度的减小而减小。最大升阻比((/)max)从3增加到44,主要是由于压力阻力的减少。然而,缺乏比较真实的鸟类几何在飞行中仍然是一个限制。未来的研究应该将预测的变形与实际飞行中的鸟类标本进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信