Marc J.A. Stevens, Karen Barmettler, Lucien Kelbert, Roger Stephan, Magdalena Nüesch-Inderbinen
{"title":"Genome based characterization of Yersinia enterocolitica from different food matrices in Switzerland in 2024","authors":"Marc J.A. Stevens, Karen Barmettler, Lucien Kelbert, Roger Stephan, Magdalena Nüesch-Inderbinen","doi":"10.1016/j.meegid.2025.105719","DOIUrl":null,"url":null,"abstract":"<div><div><em>Yersinia enterocolitica</em> causes food-borne gastroenteritis. However, little is known about the genetic diversity and pathogenic potential of <em>Y. enterocolitica</em> in different food commodities.</div><div>In this study, presumptive <em>Y. enterocolitica</em> strains were isolated from 32 of 100 pork samples, from 25 of 100 chicken meat samples, and from 22 of 97 produce samples (fresh herbs and salads), all collected at retail level in Switzerland in 2024. All isolates underwent whole-genome sequencing (WGS). One isolate was re-classified as <em>Y. hibernica</em>. Three strains belonged to biotype (BT) 4, all from pork, and 86 strains to BT 1A. The isolates belonged to 45 sequence types (STs). A total of 76 putative plasmids were detected. Each BT 4 isolate carried a pYV-like plasmid harbouring 44 virulence factors (VFs). Plasmids from the same type were identified in different ST, showing that genetic exchange between ST occurs. Twelve isolates from poultry meat carried plasmids harbouring the <em>msrAB</em> operon which is linked to oxidative stress tolerance. Nine isolates from pork and poultry meat contained plasmids carrying the <em>cag</em> pathogenicity island associated with cytotoxicity, and four isolates from produce carried plasmids harbouring a heat labile enterotoxin. None of the isolates harboured plasmid-mediated antimicrobial resistance (AMR) genes. <em>Y. enterocolitica</em> BT 4 (<em>n</em> = 3) and BT 1A (n = 3) were clonal to <em>Y. enterocolitica</em> previously isolated from Swiss human cases.</div><div>Our data provide valuable insights into the occurrence and genomic characteristics of <em>Y. enterocolitica</em> in food, their relatedness to human strains, and their adaptation to food matrices.</div></div>","PeriodicalId":54986,"journal":{"name":"Infection Genetics and Evolution","volume":"128 ","pages":"Article 105719"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection Genetics and Evolution","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567134825000085","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Yersinia enterocolitica causes food-borne gastroenteritis. However, little is known about the genetic diversity and pathogenic potential of Y. enterocolitica in different food commodities.
In this study, presumptive Y. enterocolitica strains were isolated from 32 of 100 pork samples, from 25 of 100 chicken meat samples, and from 22 of 97 produce samples (fresh herbs and salads), all collected at retail level in Switzerland in 2024. All isolates underwent whole-genome sequencing (WGS). One isolate was re-classified as Y. hibernica. Three strains belonged to biotype (BT) 4, all from pork, and 86 strains to BT 1A. The isolates belonged to 45 sequence types (STs). A total of 76 putative plasmids were detected. Each BT 4 isolate carried a pYV-like plasmid harbouring 44 virulence factors (VFs). Plasmids from the same type were identified in different ST, showing that genetic exchange between ST occurs. Twelve isolates from poultry meat carried plasmids harbouring the msrAB operon which is linked to oxidative stress tolerance. Nine isolates from pork and poultry meat contained plasmids carrying the cag pathogenicity island associated with cytotoxicity, and four isolates from produce carried plasmids harbouring a heat labile enterotoxin. None of the isolates harboured plasmid-mediated antimicrobial resistance (AMR) genes. Y. enterocolitica BT 4 (n = 3) and BT 1A (n = 3) were clonal to Y. enterocolitica previously isolated from Swiss human cases.
Our data provide valuable insights into the occurrence and genomic characteristics of Y. enterocolitica in food, their relatedness to human strains, and their adaptation to food matrices.
期刊介绍:
(aka Journal of Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases -- MEEGID)
Infectious diseases constitute one of the main challenges to medical science in the coming century. The impressive development of molecular megatechnologies and of bioinformatics have greatly increased our knowledge of the evolution, transmission and pathogenicity of infectious diseases. Research has shown that host susceptibility to many infectious diseases has a genetic basis. Furthermore, much is now known on the molecular epidemiology, evolution and virulence of pathogenic agents, as well as their resistance to drugs, vaccines, and antibiotics. Equally, research on the genetics of disease vectors has greatly improved our understanding of their systematics, has increased our capacity to identify target populations for control or intervention, and has provided detailed information on the mechanisms of insecticide resistance.
However, the genetics and evolutionary biology of hosts, pathogens and vectors have tended to develop as three separate fields of research. This artificial compartmentalisation is of concern due to our growing appreciation of the strong co-evolutionary interactions among hosts, pathogens and vectors.
Infection, Genetics and Evolution and its companion congress [MEEGID](http://www.meegidconference.com/) (for Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases) are the main forum acting for the cross-fertilization between evolutionary science and biomedical research on infectious diseases.
Infection, Genetics and Evolution is the only journal that welcomes articles dealing with the genetics and evolutionary biology of hosts, pathogens and vectors, and coevolution processes among them in relation to infection and disease manifestation. All infectious models enter the scope of the journal, including pathogens of humans, animals and plants, either parasites, fungi, bacteria, viruses or prions. The journal welcomes articles dealing with genetics, population genetics, genomics, postgenomics, gene expression, evolutionary biology, population dynamics, mathematical modeling and bioinformatics. We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services .