Jointly modeling responses and omitted items by a competing risk model: A survival analysis approach.

IF 1.5 3区 心理学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Jinxin Guo, Xin Xu, Guanhua Fang, Zhiliang Ying, Susu Zhang
{"title":"Jointly modeling responses and omitted items by a competing risk model: A survival analysis approach.","authors":"Jinxin Guo, Xin Xu, Guanhua Fang, Zhiliang Ying, Susu Zhang","doi":"10.1111/bmsp.12382","DOIUrl":null,"url":null,"abstract":"<p><p>Item response theory models are commonly adopted in educational assessment and psychological measurement. Such models need to be modified to accommodate practical situations when statistical sampling assumptions are violated. Omission is a common phenomenon in educational testing. In modern computer-based testing, we have not only examinees' responses but also their response times. This paper utilizes response time and develops a joint model of responses and response times. The new approach is analogous to those developed in survival analysis for dealing with right-censored data. In particular, a key ingredient is the introduction of the omission time (OT), which corresponds to the censoring time in survival analysis. By competing risk formulation, the proposed method provides an alternative narrative to how an item becomes answered versus omitted, depending on the competing relationship of response time and OT, so that the likelihood function can be constructed properly. The maximum likelihood estimator can be computed via the expectation-maximization algorithm. Simulation studies were conducted to evaluate the performance of the proposed method and its robustness against various mis-specifications. The method was applied to a dataset from the PISA 2015 Science Test.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12382","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Item response theory models are commonly adopted in educational assessment and psychological measurement. Such models need to be modified to accommodate practical situations when statistical sampling assumptions are violated. Omission is a common phenomenon in educational testing. In modern computer-based testing, we have not only examinees' responses but also their response times. This paper utilizes response time and develops a joint model of responses and response times. The new approach is analogous to those developed in survival analysis for dealing with right-censored data. In particular, a key ingredient is the introduction of the omission time (OT), which corresponds to the censoring time in survival analysis. By competing risk formulation, the proposed method provides an alternative narrative to how an item becomes answered versus omitted, depending on the competing relationship of response time and OT, so that the likelihood function can be constructed properly. The maximum likelihood estimator can be computed via the expectation-maximization algorithm. Simulation studies were conducted to evaluate the performance of the proposed method and its robustness against various mis-specifications. The method was applied to a dataset from the PISA 2015 Science Test.

通过竞争风险模型联合建模响应和遗漏项目:一种生存分析方法。
项目反应理论模型是教育评价和心理测量中常用的模型。当统计抽样假设被违反时,这些模型需要被修改以适应实际情况。遗漏是教育测试中普遍存在的现象。在现代的计算机测试中,我们不仅有考生的反应,还有他们的反应时间。本文利用响应时间,建立了响应和响应时间的联合模型。这种新方法类似于在生存分析中开发的用于处理右审查数据的方法。其中一个关键因素是省略时间(OT)的引入,它对应于生存分析中的审查时间。通过竞争风险公式,该方法根据响应时间和OT的竞争关系,提供了一个项目如何被回答或被省略的替代叙述,从而可以正确构建似然函数。最大似然估计量可以通过期望最大化算法来计算。通过仿真研究来评估该方法的性能及其对各种错误规范的鲁棒性。该方法应用于2015年PISA科学测试的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
3.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including: • mathematical psychology • statistics • psychometrics • decision making • psychophysics • classification • relevant areas of mathematics, computing and computer software These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信