{"title":"Sister chromatid cohesion through the lens of biochemical experiments","authors":"Yasuto Murayama","doi":"10.1016/j.ceb.2025.102464","DOIUrl":null,"url":null,"abstract":"<div><div>Faithful chromosome segregation in eukaryotes relies on physical cohesion between newly duplicated sister chromatids. Cohesin is a ring-shaped ATPase assembly that mediates sister chromatid cohesion through its ability to topologically entrap DNA. Cohesin, assisted by several regulatory proteins, binds to DNA prior to DNA replication and then holds two sister DNAs together when it encounters the replication machinery. Cohesion establishment further requires cohesin acetylation, which confers near eternal stability on chromatin-bound cohesin until the onset of chromosome segregation. In addition to a wealth of experimental evidence from cellular studies, recent advances in reconstitution approaches are now beginning to unravel the biochemical properties of cohesin that underlie its function in sister chromatid cohesion. This review summarizes recent insights into the mechanism of cohesion establishment.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"93 ","pages":"Article 102464"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095506742500002X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Faithful chromosome segregation in eukaryotes relies on physical cohesion between newly duplicated sister chromatids. Cohesin is a ring-shaped ATPase assembly that mediates sister chromatid cohesion through its ability to topologically entrap DNA. Cohesin, assisted by several regulatory proteins, binds to DNA prior to DNA replication and then holds two sister DNAs together when it encounters the replication machinery. Cohesion establishment further requires cohesin acetylation, which confers near eternal stability on chromatin-bound cohesin until the onset of chromosome segregation. In addition to a wealth of experimental evidence from cellular studies, recent advances in reconstitution approaches are now beginning to unravel the biochemical properties of cohesin that underlie its function in sister chromatid cohesion. This review summarizes recent insights into the mechanism of cohesion establishment.
期刊介绍:
Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings.
COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.