KV1 Channels Enable Myelinated Axons to Transmit Spikes Reliably without Spiking Ectopically.

IF 4.4 2区 医学 Q1 NEUROSCIENCES
Nooshin Abdollahi, Yu-Feng Xie, Stéphanie Ratté, Steven A Prescott
{"title":"K<sub>V</sub>1 Channels Enable Myelinated Axons to Transmit Spikes Reliably without Spiking Ectopically.","authors":"Nooshin Abdollahi, Yu-Feng Xie, Stéphanie Ratté, Steven A Prescott","doi":"10.1523/JNEUROSCI.1889-24.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Action potentials (spikes) are regenerated at each node of Ranvier during saltatory transmission along a myelinated axon. The high density of voltage-gated sodium channels required by nodes to reliably transmit spikes increases the risk of ectopic spike generation in the axon. Here we show that ectopic spiking is avoided because K<sub>V</sub>1 channels prevent nodes from responding to slow depolarization; instead, axons respond selectively to rapid depolarization because K<sub>V</sub>1 channels implement a high-pass filter. To characterize this filter, we compared spike initiation properties in the soma and axon of CA1 pyramidal neurons from mice of both sexes, using spatially restricted photoactivation of channelrhodopsin-2 (ChR2) to evoke spikes in either region while simultaneously recording at the soma. Somatic photostimulation evoked repetitive spiking whereas axonal photostimulation evoked transient spiking. Blocking K<sub>V</sub>1 channels converted the axon photostimulation response to repetitive spiking and encouraged spontaneous ectopic spike initiation in the axon. According to computational modeling, the high-pass filter implemented by K<sub>V</sub>1 channels matches the axial current waveform associated with saltatory conduction, enabling axons to faithfully transmit digital signals by maximizing their signal-to-noise ratio for this task. Specifically, a node generates a single spike only when rapidly depolarized, which is precisely what occurs during saltatory conduction when a pulse of axial current (triggered by a spike occurring at the upstream node) reaches the next node. The soma and axon use distinct spike initiation mechanisms (filters) appropriate for the task required of each region, namely, analog-to-digital transduction in the soma versus digital signal transmission in the axon.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11924992/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.1889-24.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Action potentials (spikes) are regenerated at each node of Ranvier during saltatory transmission along a myelinated axon. The high density of voltage-gated sodium channels required by nodes to reliably transmit spikes increases the risk of ectopic spike generation in the axon. Here we show that ectopic spiking is avoided because KV1 channels prevent nodes from responding to slow depolarization; instead, axons respond selectively to rapid depolarization because KV1 channels implement a high-pass filter. To characterize this filter, we compared spike initiation properties in the soma and axon of CA1 pyramidal neurons from mice of both sexes, using spatially restricted photoactivation of channelrhodopsin-2 (ChR2) to evoke spikes in either region while simultaneously recording at the soma. Somatic photostimulation evoked repetitive spiking whereas axonal photostimulation evoked transient spiking. Blocking KV1 channels converted the axon photostimulation response to repetitive spiking and encouraged spontaneous ectopic spike initiation in the axon. According to computational modeling, the high-pass filter implemented by KV1 channels matches the axial current waveform associated with saltatory conduction, enabling axons to faithfully transmit digital signals by maximizing their signal-to-noise ratio for this task. Specifically, a node generates a single spike only when rapidly depolarized, which is precisely what occurs during saltatory conduction when a pulse of axial current (triggered by a spike occurring at the upstream node) reaches the next node. The soma and axon use distinct spike initiation mechanisms (filters) appropriate for the task required of each region, namely, analog-to-digital transduction in the soma versus digital signal transmission in the axon.

KV1通道使髓鞘轴突能够可靠地传递尖峰而不产生异位尖峰。
在沿有髓鞘轴突的跳跃传递过程中,动作电位(尖峰)在Ranvier的每个节点再生。节点可靠传递尖峰所需的高密度电压门控钠通道增加了轴突产生异位尖峰的风险。本研究表明,由于KV1通道阻止了节点对缓慢去极化的响应,因此可以避免异位尖峰;相反,轴突选择性地响应快速去极化,因为KV1通道实现了高通滤波器。为了描述这种过滤器,我们比较了雌雄小鼠CA1锥体神经元的体细胞和轴突的尖峰起始特性,使用空间受限的视紫红质-2通道(ChR2)光激活在任何区域唤起尖峰,同时在体细胞记录。体细胞光刺激引起重复的脉冲,而轴突光刺激引起短暂的脉冲。阻断KV1通道可将轴突光刺激反应转化为重复尖峰,并促进轴突自发异位尖峰起始。根据计算建模,由KV1通道实现的高通滤波器与与跃变传导相关的轴向电流波形相匹配,使轴突能够忠实地传输数字信号,从而最大化其信噪比。具体来说,一个节点只有在快速去极化时才会产生单个尖峰,这正是在跃变传导过程中轴向电流脉冲(由上游节点发生的尖峰触发)到达下一个节点时发生的情况。体细胞和轴突使用不同的尖峰起始机制(过滤器),适合于每个区域所需的任务,即体细胞中的模拟-数字转导与轴突中的数字信号传输。神经元利用动作电位或峰电位来远距离可靠地传递信息。根据所涉及的离子通道的类型,可以通过不同的动力学机制启动尖峰。引起尖峰所需的输入取决于尖峰起始动力学的不同。利用定向光遗传刺激在不同的亚细胞区室中唤起尖峰,我们发现锥体神经元的体细胞和轴突使用不同的尖峰起始机制来适应每个区室的不同作用。具体来说,体细胞使用低通滤波器支持模数转导,而轴突使用KV1通道实现高通滤波器,似乎优化了传输尖峰。重要的是,高通滤波器防止轴突产生异位尖峰,如果缓慢去极化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroscience
Journal of Neuroscience 医学-神经科学
CiteScore
9.30
自引率
3.80%
发文量
1164
审稿时长
12 months
期刊介绍: JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信