NOTCH1, 2, and 3 receptors enhance osteoblastogenesis of mesenchymal C3H10T1/2 cells and inhibit this process in preosteoblastic MC3T3-E1 cells.

IF 2.2 3区 生物学 Q4 CELL BIOLOGY
Jose-Luis Resuela-González, María-Julia González-Gómez, María-Milagros Rodríguez-Cano, Susana López-López, Eva-María Monsalve, María-José M Díaz-Guerra, Jorge Laborda, María-Luisa Nueda, Victoriano Baladrón
{"title":"NOTCH1, 2, and 3 receptors enhance osteoblastogenesis of mesenchymal C3H10T1/2 cells and inhibit this process in preosteoblastic MC3T3-E1 cells.","authors":"Jose-Luis Resuela-González, María-Julia González-Gómez, María-Milagros Rodríguez-Cano, Susana López-López, Eva-María Monsalve, María-José M Díaz-Guerra, Jorge Laborda, María-Luisa Nueda, Victoriano Baladrón","doi":"10.1016/j.diff.2025.100837","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoblastogenesis is governed by complex interplays among signaling pathways, which modulate the expression of specific markers at each differentiation stage. This process enables osteoblast precursor cells to adopt the morphological and biochemical characteristics of mature bone cells. Our study investigates the role of NOTCH signaling in osteogenesis in MC3T3-E1 and C3H10T1/2 cell lines. MC3T3-E1 cells are preosteoblast precursors widely recognized as a model for bone biology research, offering a convenient and physiologically relevant system to study osteoblast transcriptional regulation. Conversely, the mesenchymal C3H10T1/2 cells are multipotent, capable of differentiating into osteoblasts, adipocytes, and chondrocytes under specific extracellular cues. The core of this in vitro study is the comparative analysis of the impact of overexpressing each mammalian NOTCH receptor on osteoblastogenesis in two cell lines reflecting different cell differentiation stages. We generated stable transfectant pools of both cell lines for each of the four NOTCH receptors and characterized their effect on osteoblastogenesis. We successfully obtained transfectant pools that overexpress Notch1, Notch2 and Notch3 at both mRNA and protein levels. However, we were unable to obtain cells overexpressing Notch4 at protein level. Our findings reveal that the overexpression of NOTCH1, NOTCH2, and NOTCH3 receptors promotes osteoblast differentiation in mesenchymal C3H10T1/2 cells, while inhibiting it in preosteoblastic MC3T3-E1 cells. These results provide novel insights into the distinct roles of NOTCH receptors in osteoblastogenesis across two different precursor cell types, potentially guiding the development of new therapeutic approaches for bone diseases.</p>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":"142 ","pages":"100837"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.diff.2025.100837","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoblastogenesis is governed by complex interplays among signaling pathways, which modulate the expression of specific markers at each differentiation stage. This process enables osteoblast precursor cells to adopt the morphological and biochemical characteristics of mature bone cells. Our study investigates the role of NOTCH signaling in osteogenesis in MC3T3-E1 and C3H10T1/2 cell lines. MC3T3-E1 cells are preosteoblast precursors widely recognized as a model for bone biology research, offering a convenient and physiologically relevant system to study osteoblast transcriptional regulation. Conversely, the mesenchymal C3H10T1/2 cells are multipotent, capable of differentiating into osteoblasts, adipocytes, and chondrocytes under specific extracellular cues. The core of this in vitro study is the comparative analysis of the impact of overexpressing each mammalian NOTCH receptor on osteoblastogenesis in two cell lines reflecting different cell differentiation stages. We generated stable transfectant pools of both cell lines for each of the four NOTCH receptors and characterized their effect on osteoblastogenesis. We successfully obtained transfectant pools that overexpress Notch1, Notch2 and Notch3 at both mRNA and protein levels. However, we were unable to obtain cells overexpressing Notch4 at protein level. Our findings reveal that the overexpression of NOTCH1, NOTCH2, and NOTCH3 receptors promotes osteoblast differentiation in mesenchymal C3H10T1/2 cells, while inhibiting it in preosteoblastic MC3T3-E1 cells. These results provide novel insights into the distinct roles of NOTCH receptors in osteoblastogenesis across two different precursor cell types, potentially guiding the development of new therapeutic approaches for bone diseases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Differentiation
Differentiation 生物-发育生物学
CiteScore
4.10
自引率
3.40%
发文量
38
审稿时长
51 days
期刊介绍: Differentiation is a multidisciplinary journal dealing with topics relating to cell differentiation, development, cellular structure and function, and cancer. Differentiation of eukaryotes at the molecular level and the use of transgenic and targeted mutagenesis approaches to problems of differentiation are of particular interest to the journal. The journal will publish full-length articles containing original work in any of these areas. We will also publish reviews and commentaries on topics of current interest. The principal subject areas the journal covers are: • embryonic patterning and organogenesis • human development and congenital malformation • mechanisms of cell lineage commitment • tissue homeostasis and oncogenic transformation • establishment of cellular polarity • stem cell differentiation • cell reprogramming mechanisms • stability of the differentiated state • cell and tissue interactions in vivo and in vitro • signal transduction pathways in development and differentiation • carcinogenesis and cancer • mechanisms involved in cell growth and division especially relating to cancer • differentiation in regeneration and ageing • therapeutic applications of differentiation processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信