Tensor neural networks for high-dimensional Fokker–Planck equations

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Taorui Wang , Zheyuan Hu , Kenji Kawaguchi , Zhongqiang Zhang , George Em Karniadakis
{"title":"Tensor neural networks for high-dimensional Fokker–Planck equations","authors":"Taorui Wang ,&nbsp;Zheyuan Hu ,&nbsp;Kenji Kawaguchi ,&nbsp;Zhongqiang Zhang ,&nbsp;George Em Karniadakis","doi":"10.1016/j.neunet.2025.107165","DOIUrl":null,"url":null,"abstract":"<div><div>We solve high-dimensional steady-state Fokker–Planck equations on the whole space by applying tensor neural networks. The tensor networks are a linear combination of tensor products of one-dimensional feedforward networks or a linear combination of several selected radial basis functions. The use of tensor feedforward networks allows us to efficiently exploit auto-differentiation (in physical variables) in major Python packages while using radial basis functions can fully avoid auto-differentiation, which is rather expensive in high dimensions. We then use the physics-informed neural networks and stochastic gradient descent methods to learn the tensor networks. One essential step is to determine a proper bounded domain or numerical support for the Fokker–Planck equation. To better train the tensor radial basis function networks, we impose some constraints on parameters, which lead to relatively high accuracy. We demonstrate numerically that the tensor neural networks in physics-informed machine learning are efficient for steady-state Fokker–Planck equations from two to ten dimensions.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"185 ","pages":"Article 107165"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025000449","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We solve high-dimensional steady-state Fokker–Planck equations on the whole space by applying tensor neural networks. The tensor networks are a linear combination of tensor products of one-dimensional feedforward networks or a linear combination of several selected radial basis functions. The use of tensor feedforward networks allows us to efficiently exploit auto-differentiation (in physical variables) in major Python packages while using radial basis functions can fully avoid auto-differentiation, which is rather expensive in high dimensions. We then use the physics-informed neural networks and stochastic gradient descent methods to learn the tensor networks. One essential step is to determine a proper bounded domain or numerical support for the Fokker–Planck equation. To better train the tensor radial basis function networks, we impose some constraints on parameters, which lead to relatively high accuracy. We demonstrate numerically that the tensor neural networks in physics-informed machine learning are efficient for steady-state Fokker–Planck equations from two to ten dimensions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信