Food hardness preference reveals multisensory contributions of fly larval gustatory organs in behaviour and physiology.

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences
PLoS Biology Pub Date : 2025-01-30 eCollection Date: 2025-01-01 DOI:10.1371/journal.pbio.3002730
Nikita Komarov, Cornelia Fritsch, G Larisa Maier, Johannes Bues, Marjan Biočanin, Clarisse Brunet Avalos, Andrea Dodero, Jae Young Kwon, Bart Deplancke, Simon G Sprecher
{"title":"Food hardness preference reveals multisensory contributions of fly larval gustatory organs in behaviour and physiology.","authors":"Nikita Komarov, Cornelia Fritsch, G Larisa Maier, Johannes Bues, Marjan Biočanin, Clarisse Brunet Avalos, Andrea Dodero, Jae Young Kwon, Bart Deplancke, Simon G Sprecher","doi":"10.1371/journal.pbio.3002730","DOIUrl":null,"url":null,"abstract":"<p><p>Food presents a multisensory experience, with visual, taste, and olfactory cues being important in allowing an animal to determine the safety and nutritional value of a given substance. Texture, however, remains a surprisingly unexplored aspect, despite providing key information about the state of the food through properties such as hardness, liquidity, and granularity. Food perception is achieved by specialised sensory neurons, which themselves are defined by the receptor genes they express. While it was assumed that sensory neurons respond to one or few closely related stimuli, more recent findings challenge this notion and support evidence that certain sensory neurons are more broadly tuned. In the Drosophila taste system, gustatory neurons respond to cues of opposing hedonic valence or to olfactory cues. Here, we identified that larvae ingest and navigate towards specific food substrate hardnesses and probed the role of gustatory organs in this behaviour. By developing a genetic tool targeting specifically gustatory organs, we show that these organs are major contributors for evaluation of food hardness and ingestion decision-making. We find that ablation of gustatory organs not only results in loss of chemosensation, but also navigation and ingestion preference to varied substrate hardnesses. Furthermore, we show that certain neurons in the primary taste organ exhibit varied and concurrent physiological responses to mechanical and multimodal stimulation. We show that individual neurons house independent mechanisms for multiple sensory modalities, challenging assumptions about capabilities of sensory neurons. We propose that further investigations, across the animal kingdom, may reveal higher sensory complexity than currently anticipated.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 1","pages":"e3002730"},"PeriodicalIF":9.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11781724/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002730","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Food presents a multisensory experience, with visual, taste, and olfactory cues being important in allowing an animal to determine the safety and nutritional value of a given substance. Texture, however, remains a surprisingly unexplored aspect, despite providing key information about the state of the food through properties such as hardness, liquidity, and granularity. Food perception is achieved by specialised sensory neurons, which themselves are defined by the receptor genes they express. While it was assumed that sensory neurons respond to one or few closely related stimuli, more recent findings challenge this notion and support evidence that certain sensory neurons are more broadly tuned. In the Drosophila taste system, gustatory neurons respond to cues of opposing hedonic valence or to olfactory cues. Here, we identified that larvae ingest and navigate towards specific food substrate hardnesses and probed the role of gustatory organs in this behaviour. By developing a genetic tool targeting specifically gustatory organs, we show that these organs are major contributors for evaluation of food hardness and ingestion decision-making. We find that ablation of gustatory organs not only results in loss of chemosensation, but also navigation and ingestion preference to varied substrate hardnesses. Furthermore, we show that certain neurons in the primary taste organ exhibit varied and concurrent physiological responses to mechanical and multimodal stimulation. We show that individual neurons house independent mechanisms for multiple sensory modalities, challenging assumptions about capabilities of sensory neurons. We propose that further investigations, across the animal kingdom, may reveal higher sensory complexity than currently anticipated.

食物硬度偏好揭示了蝇幼虫味觉器官在行为和生理上的多感觉作用。
食物呈现出一种多感官体验,视觉、味觉和嗅觉线索在让动物确定特定物质的安全性和营养价值方面非常重要。然而,质地仍然是一个令人惊讶的未被探索的方面,尽管它通过硬度、流动性和粒度等特性提供了关于食物状态的关键信息。食物感知是由专门的感觉神经元实现的,这些神经元本身是由它们表达的受体基因决定的。虽然假设感觉神经元对一个或几个密切相关的刺激做出反应,但最近的研究结果挑战了这一概念,并支持某些感觉神经元更广泛调节的证据。在果蝇的味觉系统中,味觉神经元对相反的快乐价或嗅觉信号作出反应。在这里,我们确定了幼虫摄取和导航到特定的食物基质硬度,并探讨了味觉器官在这一行为中的作用。通过开发专门针对味觉器官的遗传工具,我们表明这些器官是评估食物硬度和摄入决策的主要贡献者。我们发现,味觉器官的消融不仅会导致化学感觉的丧失,而且会导致对不同基质硬度的导航和摄入偏好的丧失。此外,我们表明,初级味觉器官中的某些神经元对机械和多模态刺激表现出不同和同步的生理反应。我们表明,单个神经元具有多种感觉模式的独立机制,挑战了关于感觉神经元能力的假设。我们建议,在整个动物王国进行进一步的调查,可能会揭示出比目前预期更高的感官复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信