Velocity ratings and perceptual qualities of electrotactile stimulation of the foot sole are impacted by direction, stimulus interval, and cutaneous saltation.
{"title":"Velocity ratings and perceptual qualities of electrotactile stimulation of the foot sole are impacted by direction, stimulus interval, and cutaneous saltation.","authors":"Michael Apollinaro, Leah R Bent","doi":"10.1177/03010066251315053","DOIUrl":null,"url":null,"abstract":"<p><p>Electrotactile stimulation is a çmethod of activating the tactile system by bypassing cutaneous mechanoreceptors and exciting the cutaneous afferent endings directly. This method is of interest for its potential in wearable tactile augmentation technologies. The generation of meaningful electrotactile sensation could benefit cases of peripheral neuropathy or prosthesis. There are limitations in our understanding of an electrotactile stimulations' capacity to represent tactile sensibilities, and its susceptibility to missense. The spatiotemporal parameters of an electrotactile sequence were varied. The present work extends the assessment of subjective evaluations of localization, velocity, and descriptive qualities. We applied electrotactile pulses at three sites on the foot sole, using three patterns across these sites: toward the heel or toes. We tested at three interstimulus intervals (100 ms, 160 ms, 220 ms). Faster sequences produced higher velocity ratings. Sequence direction across the foot sole impacted velocity ratings-with heel-to-toe sequences demonstrating a higher velocity rating than toe-to-heel sequences. During faster sequences with site repetition, cutaneous saltation is likely causing missense during localization. The spatiotemporal missense did not impact velocity ratings. This indicates that certain aspects of electrotactile sequence perception, such as velocity, are preserved through tactile illusions. These findings may be used to increase the resolution of stimulating grids.</p>","PeriodicalId":49708,"journal":{"name":"Perception","volume":" ","pages":"160-179"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11869507/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Perception","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/03010066251315053","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrotactile stimulation is a çmethod of activating the tactile system by bypassing cutaneous mechanoreceptors and exciting the cutaneous afferent endings directly. This method is of interest for its potential in wearable tactile augmentation technologies. The generation of meaningful electrotactile sensation could benefit cases of peripheral neuropathy or prosthesis. There are limitations in our understanding of an electrotactile stimulations' capacity to represent tactile sensibilities, and its susceptibility to missense. The spatiotemporal parameters of an electrotactile sequence were varied. The present work extends the assessment of subjective evaluations of localization, velocity, and descriptive qualities. We applied electrotactile pulses at three sites on the foot sole, using three patterns across these sites: toward the heel or toes. We tested at three interstimulus intervals (100 ms, 160 ms, 220 ms). Faster sequences produced higher velocity ratings. Sequence direction across the foot sole impacted velocity ratings-with heel-to-toe sequences demonstrating a higher velocity rating than toe-to-heel sequences. During faster sequences with site repetition, cutaneous saltation is likely causing missense during localization. The spatiotemporal missense did not impact velocity ratings. This indicates that certain aspects of electrotactile sequence perception, such as velocity, are preserved through tactile illusions. These findings may be used to increase the resolution of stimulating grids.
期刊介绍:
Perception is a traditional print journal covering all areas of the perceptual sciences, but with a strong historical emphasis on perceptual illusions. Perception is a subscription journal, free for authors to publish their research as a Standard Article, Short Report or Short & Sweet. The journal also publishes Editorials and Book Reviews.