Comparing Approaches to Estimating Person Parameters for the MUPP Model.

IF 1 4区 心理学 Q4 PSYCHOLOGY, MATHEMATICAL
David M LaHuis, Caitlin E Blackmore, Gage M Ammons
{"title":"Comparing Approaches to Estimating Person Parameters for the MUPP Model.","authors":"David M LaHuis, Caitlin E Blackmore, Gage M Ammons","doi":"10.1177/01466216251316278","DOIUrl":null,"url":null,"abstract":"<p><p>This study compared maximum a posteriori (MAP), expected a posteriori (EAP), and Markov Chain Monte Carlo (MCMC) approaches to computing person scores from the Multi-Unidimensional Pairwise Preference Model. The MCMC approach used the No-U-Turn sampling (NUTS). Results suggested the EAP with fully crossed quadrature and the NUTS outperformed the others when there were fewer dimensions. In addition, the NUTS produced the most accurate estimates in larger dimension conditions. The number of items per dimension had the largest effect on person parameter recovery.</p>","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":" ","pages":"01466216251316278"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775930/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216251316278","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study compared maximum a posteriori (MAP), expected a posteriori (EAP), and Markov Chain Monte Carlo (MCMC) approaches to computing person scores from the Multi-Unidimensional Pairwise Preference Model. The MCMC approach used the No-U-Turn sampling (NUTS). Results suggested the EAP with fully crossed quadrature and the NUTS outperformed the others when there were fewer dimensions. In addition, the NUTS produced the most accurate estimates in larger dimension conditions. The number of items per dimension had the largest effect on person parameter recovery.

MUPP模型中人参数估计方法的比较。
本研究比较了最大后验(MAP)、期望后验(EAP)和马尔可夫链蒙特卡罗(MCMC)方法在多维成对偏好模型中计算人得分的方法。MCMC方法使用无掉头抽样(NUTS)。结果表明,在低维数情况下,完全交叉正交的EAP和NUTS表现较好。此外,NUTS在较大尺寸条件下产生了最准确的估计。每个维度的项目数对人参数恢复的影响最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
50
期刊介绍: Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信