CompositIA: an open-source automated quantification tool for body composition scores from thoraco-abdominal CT scans.

IF 3.7 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Raffaella Fiamma Cabini, Andrea Cozzi, Svenja Leu, Benedikt Thelen, Rolf Krause, Filippo Del Grande, Diego Ulisse Pizzagalli, Stefania Maria Rita Rizzo
{"title":"CompositIA: an open-source automated quantification tool for body composition scores from thoraco-abdominal CT scans.","authors":"Raffaella Fiamma Cabini, Andrea Cozzi, Svenja Leu, Benedikt Thelen, Rolf Krause, Filippo Del Grande, Diego Ulisse Pizzagalli, Stefania Maria Rita Rizzo","doi":"10.1186/s41747-025-00552-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Body composition scores allow for quantifying the volume and physical properties of specific tissues. However, their manual calculation is time-consuming and prone to human error. This study aims to develop and validate CompositIA, an automated, open-source pipeline for quantifying body composition scores from thoraco-abdominal computed tomography (CT) scans.</p><p><strong>Methods: </strong>A retrospective dataset of 205 contrast-enhanced thoraco-abdominal CT examinations was used for training, while 54 scans from a publicly available dataset were used for independent testing. Two radiology residents performed manual segmentation, identifying the centers of the L1 and L3 vertebrae and segmenting the corresponding axial slices. MultiResUNet was used to identify CT slices intersecting the L1 and L3 vertebrae, and its performance was evaluated using the mean absolute error (MAE). Two U-nets were used to segment the axial slices, with performance evaluated through the volumetric Dice similarity coefficient (vDSC). CompositIA's performance in quantifying body composition indices was assessed using mean percentage relative error (PRE), regression, and Bland-Altman analyses.</p><p><strong>Results: </strong>On the independent dataset, CompositIA achieved a MAE of about 5 mm in detecting slices intersecting the L1 and L3 vertebrae, with a MAE < 10 mm in at least 85% of cases and a vDSC greater than 0.85 in segmenting axial slices. Regression and Bland-Altman analyses demonstrated a strong linear relationship and good agreement between automated and manual scores (p values < 0.001 for all indices), with mean PREs ranging from 5.13% to 15.18%.</p><p><strong>Conclusion: </strong>CompositIA facilitated the automated quantification of body composition scores, achieving high precision in independent testing.</p><p><strong>Relevance statement: </strong>CompositIA is an automated, open-source pipeline for quantifying body composition indices from CT scans, simplifying clinical assessments, and expanding their applicability.</p><p><strong>Key points: </strong>Manual body composition assessment from CTs is time-consuming and prone to errors. CompositIA was trained on 205 CT scans and tested on 54 scans. CompositIA demonstrated mean percentage relative errors under 15% compared to manual indices. CompositIA simplifies body composition assessment through an artificial intelligence-driven and open-source pipeline.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":"9 1","pages":"12"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780042/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology Experimental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41747-025-00552-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Body composition scores allow for quantifying the volume and physical properties of specific tissues. However, their manual calculation is time-consuming and prone to human error. This study aims to develop and validate CompositIA, an automated, open-source pipeline for quantifying body composition scores from thoraco-abdominal computed tomography (CT) scans.

Methods: A retrospective dataset of 205 contrast-enhanced thoraco-abdominal CT examinations was used for training, while 54 scans from a publicly available dataset were used for independent testing. Two radiology residents performed manual segmentation, identifying the centers of the L1 and L3 vertebrae and segmenting the corresponding axial slices. MultiResUNet was used to identify CT slices intersecting the L1 and L3 vertebrae, and its performance was evaluated using the mean absolute error (MAE). Two U-nets were used to segment the axial slices, with performance evaluated through the volumetric Dice similarity coefficient (vDSC). CompositIA's performance in quantifying body composition indices was assessed using mean percentage relative error (PRE), regression, and Bland-Altman analyses.

Results: On the independent dataset, CompositIA achieved a MAE of about 5 mm in detecting slices intersecting the L1 and L3 vertebrae, with a MAE < 10 mm in at least 85% of cases and a vDSC greater than 0.85 in segmenting axial slices. Regression and Bland-Altman analyses demonstrated a strong linear relationship and good agreement between automated and manual scores (p values < 0.001 for all indices), with mean PREs ranging from 5.13% to 15.18%.

Conclusion: CompositIA facilitated the automated quantification of body composition scores, achieving high precision in independent testing.

Relevance statement: CompositIA is an automated, open-source pipeline for quantifying body composition indices from CT scans, simplifying clinical assessments, and expanding their applicability.

Key points: Manual body composition assessment from CTs is time-consuming and prone to errors. CompositIA was trained on 205 CT scans and tested on 54 scans. CompositIA demonstrated mean percentage relative errors under 15% compared to manual indices. CompositIA simplifies body composition assessment through an artificial intelligence-driven and open-source pipeline.

求助全文
约1分钟内获得全文 求助全文
来源期刊
European Radiology Experimental
European Radiology Experimental Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
6.70
自引率
2.60%
发文量
56
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信