Cost-effective evaluation of modified ochre soil and its combination with cationic polyacrylamide for municipal wastewater sludge conditioning.

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL
Water Science and Technology Pub Date : 2025-01-01 Epub Date: 2025-01-11 DOI:10.2166/wst.2025.005
Behzad Aghababaei, Masoud Taheriyoun, Rana Mahdavi Far
{"title":"Cost-effective evaluation of modified ochre soil and its combination with cationic polyacrylamide for municipal wastewater sludge conditioning.","authors":"Behzad Aghababaei, Masoud Taheriyoun, Rana Mahdavi Far","doi":"10.2166/wst.2025.005","DOIUrl":null,"url":null,"abstract":"<p><p>One of the most costly stages of activated sludge wastewater treatment plants is the treatment and dewatering of waste sludge. Chemical conditioning of sludge, as one of the most widespread methods to enhance sludge dewaterability, accounts for a significant portion of operational expenses due to the consumption of expensive polymeric compounds. This research aims to assess the cost-effectiveness of ochre soil, modified with hydrochloric acid, as an affordable mineral for conditioning waste sludge in an activated sludge system. The optimal conditions for acid modifications are obtained using response surface methodology. Then, its performance is compared with conventional coagulants (ferric chloride and alum) and in combination with cationic polyacrylamide (CPAM). To assess the conditioning process efficiency, the specific resistance to filtration (SRF) parameter was employed. At an optimal dose of modified ochre soil (MOS) equal to 300 (mg/g dry solids), the SRF value decreased from 31.96 to 2.7 Tm/kg. The combination of 100 (mg/gDS) MOS with 0.5 (mg/gDS) CPAM showed as the most cost-effective among the coagulants tested, with a 31% greater SRF reduction compared to CPAM used alone. This study shows the practical efficacy of an eco-friendly natural mineral as a polymer alternative, with the potential for sludge dewatering.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"91 2","pages":"174-191"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2025.005","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most costly stages of activated sludge wastewater treatment plants is the treatment and dewatering of waste sludge. Chemical conditioning of sludge, as one of the most widespread methods to enhance sludge dewaterability, accounts for a significant portion of operational expenses due to the consumption of expensive polymeric compounds. This research aims to assess the cost-effectiveness of ochre soil, modified with hydrochloric acid, as an affordable mineral for conditioning waste sludge in an activated sludge system. The optimal conditions for acid modifications are obtained using response surface methodology. Then, its performance is compared with conventional coagulants (ferric chloride and alum) and in combination with cationic polyacrylamide (CPAM). To assess the conditioning process efficiency, the specific resistance to filtration (SRF) parameter was employed. At an optimal dose of modified ochre soil (MOS) equal to 300 (mg/g dry solids), the SRF value decreased from 31.96 to 2.7 Tm/kg. The combination of 100 (mg/gDS) MOS with 0.5 (mg/gDS) CPAM showed as the most cost-effective among the coagulants tested, with a 31% greater SRF reduction compared to CPAM used alone. This study shows the practical efficacy of an eco-friendly natural mineral as a polymer alternative, with the potential for sludge dewatering.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Science and Technology
Water Science and Technology 环境科学-工程:环境
CiteScore
4.90
自引率
3.70%
发文量
366
审稿时长
4.4 months
期刊介绍: Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信