Spatiotemporal variation in size-dependent growth rates in small isolated populations of Arctic charr (Salvelinus alpinus).

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Royal Society Open Science Pub Date : 2025-01-29 eCollection Date: 2025-01-01 DOI:10.1098/rsos.241802
Elizabeth A Mittell, Camille A Leblanc, Bjarni K Kristjánsson, Moira M Ferguson, Katja Räsänen, Michael B Morrissey
{"title":"Spatiotemporal variation in size-dependent growth rates in small isolated populations of Arctic charr (<i>Salvelinus alpinus</i>).","authors":"Elizabeth A Mittell, Camille A Leblanc, Bjarni K Kristjánsson, Moira M Ferguson, Katja Räsänen, Michael B Morrissey","doi":"10.1098/rsos.241802","DOIUrl":null,"url":null,"abstract":"<p><p>As a key life-history trait, growth rates are often used to measure individual performance and to inform parameters in demographic models. Furthermore, intraspecific trait variation generates diversity in nature. Therefore, partitioning out and understanding drivers of spatiotemporal variation in growth rate is of fundamental interest in ecology and evolution. However, this has rarely been attempted owing to the amount of individual-level data required through both time and space, and issues with missing data in important covariates. Here, we implemented a Bayesian state-space model using individual-level data from 20 populations of Arctic charr (<i>Salvelinus alpinus</i>) across 15 capture occasions, which allowed us to: (i) integrate over the uncertainty of missing recapture records; (ii) robustly estimate size-dependence; and (iii) include a covariate (water temperature) that contained missing data. Interestingly, although there was substantial spatial, temporal and spatiotemporal variation in growth rate, this was only weakly associated with variation in water temperature and almost entirely independent of size, suggesting that spatiotemporal variation in other environmental conditions affected individuals across sizes similarly. This fine-scale spatiotemporal variation emphasizes the importance of local conditions and highlights the potential for spatiotemporal variation in a size-dependent life-history trait, even when environmental conditions are apparently very similar.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"12 1","pages":"241802"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774588/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.241802","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

As a key life-history trait, growth rates are often used to measure individual performance and to inform parameters in demographic models. Furthermore, intraspecific trait variation generates diversity in nature. Therefore, partitioning out and understanding drivers of spatiotemporal variation in growth rate is of fundamental interest in ecology and evolution. However, this has rarely been attempted owing to the amount of individual-level data required through both time and space, and issues with missing data in important covariates. Here, we implemented a Bayesian state-space model using individual-level data from 20 populations of Arctic charr (Salvelinus alpinus) across 15 capture occasions, which allowed us to: (i) integrate over the uncertainty of missing recapture records; (ii) robustly estimate size-dependence; and (iii) include a covariate (water temperature) that contained missing data. Interestingly, although there was substantial spatial, temporal and spatiotemporal variation in growth rate, this was only weakly associated with variation in water temperature and almost entirely independent of size, suggesting that spatiotemporal variation in other environmental conditions affected individuals across sizes similarly. This fine-scale spatiotemporal variation emphasizes the importance of local conditions and highlights the potential for spatiotemporal variation in a size-dependent life-history trait, even when environmental conditions are apparently very similar.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Royal Society Open Science
Royal Society Open Science Multidisciplinary-Multidisciplinary
CiteScore
6.00
自引率
0.00%
发文量
508
审稿时长
14 weeks
期刊介绍: Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review. The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信