Astrocyte-Derived Interleukin 11 Modulates Astrocyte-Microglia Crosstalk via Nuclear Factor-κB Signaling Pathway in Sepsis-Associated Encephalopathy.

IF 11 1区 综合性期刊 Q1 Multidisciplinary
Research Pub Date : 2025-01-30 eCollection Date: 2025-01-01 DOI:10.34133/research.0598
Dandan Zhu, Peng Wang, Xiyue Chen, Kaituo Wang, Yunsong Wu, Min Zhang, Jianhua Qin
{"title":"Astrocyte-Derived Interleukin 11 Modulates Astrocyte-Microglia Crosstalk via Nuclear Factor-κB Signaling Pathway in Sepsis-Associated Encephalopathy.","authors":"Dandan Zhu, Peng Wang, Xiyue Chen, Kaituo Wang, Yunsong Wu, Min Zhang, Jianhua Qin","doi":"10.34133/research.0598","DOIUrl":null,"url":null,"abstract":"<p><p>Sepsis-associated encephalopathy (SAE) is a severe and frequent septic complication, characterized by neuronal damage as key pathological features. The astrocyte-microglia crosstalk in the central nervous system (CNS) plays important roles in various neurological diseases. However, how astrocytes interact with microglia to regulate neuronal injury in SAE is poorly defined. In this study, we aim to investigate the molecular basis of the astrocyte-microglia crosstalk underlying SAE pathogenesis and also to explore the new therapeutic strategies targeting this crosstalk in this devastating disease. We established a human astrocyte/microglia coculture system on a microfluidic device, which allows real-time and high-resolution recording of glial responses to inflammatory stimuli. Based on this microfluidic system, we can test the responses of astrocytes and microglia to lipopolysaccharide (LPS) treatment, and identify the molecular cues that mediate the astrocyte-microglia crosstalk underlying the pathological condition. In addition, the SAE mouse model was utilized to determine the state of glial cells and evaluate the therapeutic effect of drugs targeting the astrocyte-microglia crosstalk in vivo. Here, we found that activated astrocytes and microglia exhibited close spatial interaction in the SAE mouse model. Upon LPS exposure for astrocytes, we detected that more microglia migrated to the central astrocyte culture compartment on the microfluidic device, accompanied by M1 polarization and increased cell motility in microglia. Cytokine array analysis revealed that less interleukin 11 (IL11) was secreted by astrocytes following LPS treatment, which further promoted reprogramming of microglia to pro-inflammatory M1 phenotype via the nuclear factor-κB (NF-κB) signaling pathway. Intriguingly, we found that IL11 addition markedly rescued LPS-induced neuronal injuries on the microfluidic system and brain injury in the SAE mouse model. This study defines an unknown crosstalk of astrocyte-microglia mediated by IL11, which contributed to the neuropathogenesis of SAE, and suggested a potential therapeutic value of IL11 in the devastating disease.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0598"},"PeriodicalIF":11.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780073/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0598","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Sepsis-associated encephalopathy (SAE) is a severe and frequent septic complication, characterized by neuronal damage as key pathological features. The astrocyte-microglia crosstalk in the central nervous system (CNS) plays important roles in various neurological diseases. However, how astrocytes interact with microglia to regulate neuronal injury in SAE is poorly defined. In this study, we aim to investigate the molecular basis of the astrocyte-microglia crosstalk underlying SAE pathogenesis and also to explore the new therapeutic strategies targeting this crosstalk in this devastating disease. We established a human astrocyte/microglia coculture system on a microfluidic device, which allows real-time and high-resolution recording of glial responses to inflammatory stimuli. Based on this microfluidic system, we can test the responses of astrocytes and microglia to lipopolysaccharide (LPS) treatment, and identify the molecular cues that mediate the astrocyte-microglia crosstalk underlying the pathological condition. In addition, the SAE mouse model was utilized to determine the state of glial cells and evaluate the therapeutic effect of drugs targeting the astrocyte-microglia crosstalk in vivo. Here, we found that activated astrocytes and microglia exhibited close spatial interaction in the SAE mouse model. Upon LPS exposure for astrocytes, we detected that more microglia migrated to the central astrocyte culture compartment on the microfluidic device, accompanied by M1 polarization and increased cell motility in microglia. Cytokine array analysis revealed that less interleukin 11 (IL11) was secreted by astrocytes following LPS treatment, which further promoted reprogramming of microglia to pro-inflammatory M1 phenotype via the nuclear factor-κB (NF-κB) signaling pathway. Intriguingly, we found that IL11 addition markedly rescued LPS-induced neuronal injuries on the microfluidic system and brain injury in the SAE mouse model. This study defines an unknown crosstalk of astrocyte-microglia mediated by IL11, which contributed to the neuropathogenesis of SAE, and suggested a potential therapeutic value of IL11 in the devastating disease.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信