The role of oscillations in grid cells' toroidal topology.

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Giovanni di Sarra, Siddharth Jha, Yasser Roudi
{"title":"The role of oscillations in grid cells' toroidal topology.","authors":"Giovanni di Sarra, Siddharth Jha, Yasser Roudi","doi":"10.1371/journal.pcbi.1012776","DOIUrl":null,"url":null,"abstract":"<p><p>Persistent homology applied to the activity of grid cells in the Medial Entorhinal Cortex suggests that this activity lies on a toroidal manifold. By analyzing real data and a simple model, we show that neural oscillations play a key role in the appearance of this toroidal topology. To quantitatively monitor how changes in spike trains influence the topology of the data, we first define a robust measure for the degree of toroidality of a dataset. Using this measure, we find that small perturbations ( ~ 100 ms) of spike times have little influence on both the toroidality and the hexagonality of the ratemaps. Jittering spikes by  ~ 100-500 ms, however, destroys the toroidal topology, while still having little impact on grid scores. These critical jittering time scales fall in the range of the periods of oscillations between the theta and eta bands. We thus hypothesized that these oscillatory modulations of neuronal spiking play a key role in the appearance and robustness of toroidal topology and the hexagonal spatial selectivity is not sufficient. We confirmed this hypothesis using a simple model for the activity of grid cells, consisting of an ensemble of independent rate-modulated Poisson processes. When these rates were modulated by oscillations, the network behaved similarly to the real data in exhibiting toroidal topology, even when the position of the fields were perturbed. In the absence of oscillations, this similarity was substantially lower. Furthermore, we find that the experimentally recorded spike trains indeed exhibit temporal modulations at the eta and theta bands, and that the ratio of the power in the eta band to that of the theta band, [Formula: see text], correlates with the critical jittering time at which the toroidal topology disappears.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 1","pages":"e1012776"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012776","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Persistent homology applied to the activity of grid cells in the Medial Entorhinal Cortex suggests that this activity lies on a toroidal manifold. By analyzing real data and a simple model, we show that neural oscillations play a key role in the appearance of this toroidal topology. To quantitatively monitor how changes in spike trains influence the topology of the data, we first define a robust measure for the degree of toroidality of a dataset. Using this measure, we find that small perturbations ( ~ 100 ms) of spike times have little influence on both the toroidality and the hexagonality of the ratemaps. Jittering spikes by  ~ 100-500 ms, however, destroys the toroidal topology, while still having little impact on grid scores. These critical jittering time scales fall in the range of the periods of oscillations between the theta and eta bands. We thus hypothesized that these oscillatory modulations of neuronal spiking play a key role in the appearance and robustness of toroidal topology and the hexagonal spatial selectivity is not sufficient. We confirmed this hypothesis using a simple model for the activity of grid cells, consisting of an ensemble of independent rate-modulated Poisson processes. When these rates were modulated by oscillations, the network behaved similarly to the real data in exhibiting toroidal topology, even when the position of the fields were perturbed. In the absence of oscillations, this similarity was substantially lower. Furthermore, we find that the experimentally recorded spike trains indeed exhibit temporal modulations at the eta and theta bands, and that the ratio of the power in the eta band to that of the theta band, [Formula: see text], correlates with the critical jittering time at which the toroidal topology disappears.

求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Computational Biology
PLoS Computational Biology BIOCHEMICAL RESEARCH METHODS-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.10
自引率
4.70%
发文量
820
审稿时长
2.5 months
期刊介绍: PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines. Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights. Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology. Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信