Nitric oxide mitigates cadmium stress by promoting the biosynthesis of cell walls in Robinia pseudoacacia roots.

IF 6.1 2区 生物学 Q1 PLANT SCIENCES
Xun Wang, Shufeng Wang, Lan Gao, Pan Guo, Hongxia Du, Ming Ma, Heinz Rennenberg
{"title":"Nitric oxide mitigates cadmium stress by promoting the biosynthesis of cell walls in Robinia pseudoacacia roots.","authors":"Xun Wang, Shufeng Wang, Lan Gao, Pan Guo, Hongxia Du, Ming Ma, Heinz Rennenberg","doi":"10.1016/j.plaphy.2025.109544","DOIUrl":null,"url":null,"abstract":"<p><p>Cadmium (Cd) pollution is a growing concern worldwide, because it threatens human health through the food chain. Woody plants, such as the pioneer species black locust (Robinia pseudoacacia L.), are widely used in phytoremediation of Cd-contaminated soils, but strongly differ in Cd tolerance. Nitric oxide (NO), a highly reactive gas of biogenic and anthropogenic origin, has been shown to protect plants to Cd exposure. We investigated the protective mechanism of NO against Cd toxicity in black locust using physiological, transcriptomic and metabolomic approaches. We studied the correlation between cell wall traits, genes, and metabolites. The findings indicated that NO improved the growth of black locust under Cd exposure and elevated the fraction of Cd in the cell wall. NO increased cell wall thickness by stimulating the biosynthesis of pectin, cellulose, hemicellulose, and lignin. Transcriptomic and metabolomic analyses demonstrated that NO upregulated genes related to root cell wall biosynthesis and increased the accumulation of related metabolites, thereby increasing the Cd resistance of black locust. Our results elucidated a molecular mechanism underlying NO-mediated Cd tolerance in black locust and provided novel insights for phytoremediation of Cd-polluted soils by woody plants.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109544"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2025.109544","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cadmium (Cd) pollution is a growing concern worldwide, because it threatens human health through the food chain. Woody plants, such as the pioneer species black locust (Robinia pseudoacacia L.), are widely used in phytoremediation of Cd-contaminated soils, but strongly differ in Cd tolerance. Nitric oxide (NO), a highly reactive gas of biogenic and anthropogenic origin, has been shown to protect plants to Cd exposure. We investigated the protective mechanism of NO against Cd toxicity in black locust using physiological, transcriptomic and metabolomic approaches. We studied the correlation between cell wall traits, genes, and metabolites. The findings indicated that NO improved the growth of black locust under Cd exposure and elevated the fraction of Cd in the cell wall. NO increased cell wall thickness by stimulating the biosynthesis of pectin, cellulose, hemicellulose, and lignin. Transcriptomic and metabolomic analyses demonstrated that NO upregulated genes related to root cell wall biosynthesis and increased the accumulation of related metabolites, thereby increasing the Cd resistance of black locust. Our results elucidated a molecular mechanism underlying NO-mediated Cd tolerance in black locust and provided novel insights for phytoremediation of Cd-polluted soils by woody plants.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信