Celastrol Ameliorates Hypoxia-Induced Pulmonary Hypertension by Regulation of the PDE5-cGMP-PKG Signaling Pathway.

IF 6.1 2区 医学 Q1 CHEMISTRY, MEDICINAL
Phytotherapy Research Pub Date : 2025-03-01 Epub Date: 2025-01-30 DOI:10.1002/ptr.8446
Junlan Tan, Xianya Cao, Runxiu Zheng, Silin Xie, Jian Yi, Feiying Wang, Xia Li, Lan Song, Wen Zhang, Jianmin Fan, Li Qin, Aiguo Dai
{"title":"Celastrol Ameliorates Hypoxia-Induced Pulmonary Hypertension by Regulation of the PDE5-cGMP-PKG Signaling Pathway.","authors":"Junlan Tan, Xianya Cao, Runxiu Zheng, Silin Xie, Jian Yi, Feiying Wang, Xia Li, Lan Song, Wen Zhang, Jianmin Fan, Li Qin, Aiguo Dai","doi":"10.1002/ptr.8446","DOIUrl":null,"url":null,"abstract":"<p><p>Pulmonary hypertension (PH) is a severe pulmonary vascular disease characterized by poor clinical outcomes and limited therapeutic options. Celastrol (CEL), a natural product derived from Tripterygium wilfordii Hook F, has shown therapeutic potential in PH models, although its mechanisms are not fully understood. This study aims to investigate the role of CEL in PH and explore its potential underlying mechanisms. This study investigates the role of CEL in PH and explores its underlying mechanisms. We evaluated the effects of CEL in a chronic hypoxia-induced PH rat model and hypoxia-stimulated human pulmonary arterial smooth muscle cells (HPASMCs). Bioinformatics and network pharmacology were employed to identify potential targets and pathways, which were then validated through mechanistic and functional analyses. CEL significantly reduced right ventricular systolic pressure, hypertrophy, fibrosis, and dysfunction in hypoxia-induced PH rats. It also decreased proliferating cell nuclear antigen expression and promoted apoptosis in pulmonary arterioles. Our findings suggest that CEL's therapeutic effects are mediated through the modulation of phosphodiesterase 5 (PDE5) and the activation of the cGMP-PKG signaling pathway. In HPASMCs, CEL treatment mirrored the in vivo results, and PDE5 overexpression negated CEL's antiproliferative, antimigratory, and pro-apoptotic effects. CEL ameliorates pulmonary vascular remodeling and right ventricular dysfunction in PH, potentially through the PDE5-cGMP-PKG signaling pathway. These findings position CEL as a promising candidate for PH therapy.</p>","PeriodicalId":20110,"journal":{"name":"Phytotherapy Research","volume":" ","pages":"1549-1564"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytotherapy Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ptr.8446","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Pulmonary hypertension (PH) is a severe pulmonary vascular disease characterized by poor clinical outcomes and limited therapeutic options. Celastrol (CEL), a natural product derived from Tripterygium wilfordii Hook F, has shown therapeutic potential in PH models, although its mechanisms are not fully understood. This study aims to investigate the role of CEL in PH and explore its potential underlying mechanisms. This study investigates the role of CEL in PH and explores its underlying mechanisms. We evaluated the effects of CEL in a chronic hypoxia-induced PH rat model and hypoxia-stimulated human pulmonary arterial smooth muscle cells (HPASMCs). Bioinformatics and network pharmacology were employed to identify potential targets and pathways, which were then validated through mechanistic and functional analyses. CEL significantly reduced right ventricular systolic pressure, hypertrophy, fibrosis, and dysfunction in hypoxia-induced PH rats. It also decreased proliferating cell nuclear antigen expression and promoted apoptosis in pulmonary arterioles. Our findings suggest that CEL's therapeutic effects are mediated through the modulation of phosphodiesterase 5 (PDE5) and the activation of the cGMP-PKG signaling pathway. In HPASMCs, CEL treatment mirrored the in vivo results, and PDE5 overexpression negated CEL's antiproliferative, antimigratory, and pro-apoptotic effects. CEL ameliorates pulmonary vascular remodeling and right ventricular dysfunction in PH, potentially through the PDE5-cGMP-PKG signaling pathway. These findings position CEL as a promising candidate for PH therapy.

雷公藤红素通过调节PDE5-cGMP-PKG信号通路改善缺氧诱导的肺动脉高压
肺动脉高压(PH)是一种严重的肺血管疾病,其特点是临床预后差,治疗选择有限。雷公藤红素(Celastrol, CEL)是从雷公藤中提取的天然产物,在PH模型中显示出治疗潜力,尽管其机制尚不完全清楚。本研究旨在探讨CEL在PH中的作用,并探讨其潜在的机制。本研究探讨了CEL在PH中的作用,并探讨了其潜在的机制。我们评估了CEL在慢性缺氧诱导的PH大鼠模型和缺氧刺激的人肺动脉平滑肌细胞(HPASMCs)中的作用。利用生物信息学和网络药理学来确定潜在的靶点和途径,然后通过机制和功能分析来验证这些靶点和途径。CEL显著降低缺氧诱导的PH大鼠右心室收缩压、肥厚、纤维化和功能障碍。降低肺小动脉增殖细胞核抗原表达,促进肺小动脉细胞凋亡。我们的研究结果表明,CEL的治疗作用是通过调节磷酸二酯酶5 (PDE5)和激活cGMP-PKG信号通路介导的。在HPASMCs中,CEL治疗反映了体内结果,PDE5过表达否定了CEL的抗增殖、抗迁移和促凋亡作用。CEL可能通过PDE5-cGMP-PKG信号通路改善肺血管重构和右心室功能障碍。这些发现使CEL成为PH治疗的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Phytotherapy Research
Phytotherapy Research 医学-药学
CiteScore
12.80
自引率
5.60%
发文量
325
审稿时长
2.6 months
期刊介绍: Phytotherapy Research is an internationally recognized pharmacological journal that serves as a trailblazing resource for biochemists, pharmacologists, and toxicologists. We strive to disseminate groundbreaking research on medicinal plants, pushing the boundaries of knowledge and understanding in this field. Our primary focus areas encompass pharmacology, toxicology, and the clinical applications of herbs and natural products in medicine. We actively encourage submissions on the effects of commonly consumed food ingredients and standardized plant extracts. We welcome a range of contributions including original research papers, review articles, and letters. By providing a platform for the latest developments and discoveries in phytotherapy, we aim to support the advancement of scientific knowledge and contribute to the improvement of modern medicine.
文献相关原料
公司名称
产品信息
索莱宝
Masson's trichrome staining kit
索莱宝
Citrate antigen retrieval solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信