Super Partition: fast, flexible, and interpretable large-scale data reduction in R.

IF 2.3 3区 生物学 Q2 MULTIDISCIPLINARY SCIENCES
PeerJ Pub Date : 2025-01-27 eCollection Date: 2025-01-01 DOI:10.7717/peerj.18580
Katelyn J Queen, Malcolm Barrett, Joshua Millstein
{"title":"Super Partition: fast, flexible, and interpretable large-scale data reduction in R.","authors":"Katelyn J Queen, Malcolm Barrett, Joshua Millstein","doi":"10.7717/peerj.18580","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>As data sets increase in size and complexity with advancing technology, flexible and interpretable data reduction methods that quantify information preservation become increasingly important.</p><p><strong>Results: </strong>Super Partition is a large-scale approximation of the original Partition data reduction algorithm that allows the user to flexibly specify the minimum amount of information captured for each input feature. In an initial step, Genie, a fast, hierarchical clustering algorithm, forms a super-partition, thereby increasing the computational tractability by allowing Partition to be applied to the subsets. Applications to high dimensional data sets show scalability to hundreds of thousands of features with reasonable computation times.</p><p><strong>Availability and implementation: </strong>Super Partition is a new function within the partition R package, available on the CRAN repository (https://cran.r-project.org/web/packages/partition/index.html).</p>","PeriodicalId":19799,"journal":{"name":"PeerJ","volume":"13 ","pages":"e18580"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11781262/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7717/peerj.18580","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: As data sets increase in size and complexity with advancing technology, flexible and interpretable data reduction methods that quantify information preservation become increasingly important.

Results: Super Partition is a large-scale approximation of the original Partition data reduction algorithm that allows the user to flexibly specify the minimum amount of information captured for each input feature. In an initial step, Genie, a fast, hierarchical clustering algorithm, forms a super-partition, thereby increasing the computational tractability by allowing Partition to be applied to the subsets. Applications to high dimensional data sets show scalability to hundreds of thousands of features with reasonable computation times.

Availability and implementation: Super Partition is a new function within the partition R package, available on the CRAN repository (https://cran.r-project.org/web/packages/partition/index.html).

求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ
PeerJ MULTIDISCIPLINARY SCIENCES-
CiteScore
4.70
自引率
3.70%
发文量
1665
审稿时长
10 weeks
期刊介绍: PeerJ is an open access peer-reviewed scientific journal covering research in the biological and medical sciences. At PeerJ, authors take out a lifetime publication plan (for as little as $99) which allows them to publish articles in the journal for free, forever. PeerJ has 5 Nobel Prize Winners on the Board; they have won several industry and media awards; and they are widely recognized as being one of the most interesting recent developments in academic publishing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信