Yunfan Li, Hancong Li, Yijie Lin, Dan Zhang, Dezhong Peng, Xiting Liu, Jie Xie, Peng Hu, Lu Chen, Han Luo, Xi Peng
{"title":"MetaQ: fast, scalable and accurate metacell inference via single-cell quantization.","authors":"Yunfan Li, Hancong Li, Yijie Lin, Dan Zhang, Dezhong Peng, Xiting Liu, Jie Xie, Peng Hu, Lu Chen, Han Luo, Xi Peng","doi":"10.1038/s41467-025-56424-6","DOIUrl":null,"url":null,"abstract":"<p><p>To overcome the computational barriers of analyzing large-scale single-cell sequencing data, we introduce MetaQ, a metacell algorithm that scales to arbitrarily large datasets with linear runtime and constant memory usage. Inspired by cellular development, MetaQ conceptualizes each metacell as a collective ancestor of biologically similar cells. By quantizing cells into a discrete codebook, where each entry represents a metacell capable of reconstructing the original cells it quantizes, MetaQ identifies homogeneous cell subsets for efficient and accurate metacell inference. This approach reduces computational complexity from exponential to linear while maintaining or surpassing the performance of existing metacell algorithms. Extensive experiments demonstrate that MetaQ excels in downstream tasks such as cell type annotation, developmental trajectory inference, batch integration, and differential expression analysis. Thanks to its superior efficiency and effectiveness, MetaQ makes analyzing datasets with millions of cells practical, offering a powerful solution for single-cell studies in the era of high-throughput profiling.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"1205"},"PeriodicalIF":14.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56424-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
To overcome the computational barriers of analyzing large-scale single-cell sequencing data, we introduce MetaQ, a metacell algorithm that scales to arbitrarily large datasets with linear runtime and constant memory usage. Inspired by cellular development, MetaQ conceptualizes each metacell as a collective ancestor of biologically similar cells. By quantizing cells into a discrete codebook, where each entry represents a metacell capable of reconstructing the original cells it quantizes, MetaQ identifies homogeneous cell subsets for efficient and accurate metacell inference. This approach reduces computational complexity from exponential to linear while maintaining or surpassing the performance of existing metacell algorithms. Extensive experiments demonstrate that MetaQ excels in downstream tasks such as cell type annotation, developmental trajectory inference, batch integration, and differential expression analysis. Thanks to its superior efficiency and effectiveness, MetaQ makes analyzing datasets with millions of cells practical, offering a powerful solution for single-cell studies in the era of high-throughput profiling.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.