Chhabilal Regmi, Yuwaraj Khatri Kshetri, S Ranil Wickramasinghe
{"title":"Hybrid combination of advanced oxidation process with membrane technology for wastewater treatment: gains and problems.","authors":"Chhabilal Regmi, Yuwaraj Khatri Kshetri, S Ranil Wickramasinghe","doi":"10.1088/1361-6528/adb040","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past few decades, significant efforts have been dedicated to advancing technologies for the removal of micropollutants from water. Achieving complete pure water with a single treatment process is challenging and nearly impossible. One promising approach among various alternatives is adopting hybrid technology, which is considered as a win-win technology. It utilizes the advantages of each technique, resulting in the enhancement of wastewater treatment. This pioneering idea is designed to significantly enhance water quality, addressing real-world implementation hurdles, and offer a promising solution to the worldwide issue of water scarcity. This review assesses the merits and drawbacks of the hybrid photocatalytic membrane technology employed in wastewater treatment. Notably, this hybrid process not only improves the membrane filtration capacity and permeates water quality but also enhances the antifouling performance of the membrane. However, it is crucial to acknowledge potential drawbacks, such as membrane structure degradation and photocatalytic activity loss in nanoparticles during the operation period. While improvements in wastewater treatment efficiency are evident, there remains ample room for further enhancements. The review summarizes the future directions and challenges of implementing such an integrated system.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/adb040","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past few decades, significant efforts have been dedicated to advancing technologies for the removal of micropollutants from water. Achieving complete pure water with a single treatment process is challenging and nearly impossible. One promising approach among various alternatives is adopting hybrid technology, which is considered as a win-win technology. It utilizes the advantages of each technique, resulting in the enhancement of wastewater treatment. This pioneering idea is designed to significantly enhance water quality, addressing real-world implementation hurdles, and offer a promising solution to the worldwide issue of water scarcity. This review assesses the merits and drawbacks of the hybrid photocatalytic membrane technology employed in wastewater treatment. Notably, this hybrid process not only improves the membrane filtration capacity and permeates water quality but also enhances the antifouling performance of the membrane. However, it is crucial to acknowledge potential drawbacks, such as membrane structure degradation and photocatalytic activity loss in nanoparticles during the operation period. While improvements in wastewater treatment efficiency are evident, there remains ample room for further enhancements. The review summarizes the future directions and challenges of implementing such an integrated system.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.