Review of carbonaceous nanoparticles for antibacterial uses in various dental infections.

IF 3.6 3区 医学 Q3 NANOSCIENCE & NANOTECHNOLOGY
Naghmeh Shenasa, Mareb Hamed Ahmed, Radhwan Abdul Kareem, Athmar Jaber Zrzor, Aseel Salah Mansoor, Zainab H Athab, Hannaneh Bayat, Fatemeh Abedi Diznab
{"title":"Review of carbonaceous nanoparticles for antibacterial uses in various dental infections.","authors":"Naghmeh Shenasa, Mareb Hamed Ahmed, Radhwan Abdul Kareem, Athmar Jaber Zrzor, Aseel Salah Mansoor, Zainab H Athab, Hannaneh Bayat, Fatemeh Abedi Diznab","doi":"10.1080/17435390.2025.2454277","DOIUrl":null,"url":null,"abstract":"<p><p>The mouth cavity is the second most complex microbial community in the human body. It is composed of bacteria, viruses, fungi, and protozoa. An imbalance in the oral microbiota may lead to various conditions, including caries, soft tissue infections, periodontitis, root canal infections, peri-implantitis (PI), pulpitis, candidiasis, and denture stomatitis. Additionally, several locally administered antimicrobials have been suggested for dentistry in surgical and non-surgical applications. The main drawbacks are increased antimicrobial resistance, the risk of upsetting the natural microbiota, and hypersensitivity responses. Because of their unique physiochemical characteristics, nanoparticles (NPs) can circumvent antibiotic-resistance mechanisms and exert antimicrobial action via a variety of new bactericidal routes. Because of their anti-microbial properties, carbon-based NPs are becoming more and more effective antibacterial agents. Periodontitis, mouth infections, PI, dentin and root infections, and other dental diseases are among the conditions that may be treated using carbon NPs (CNPs) like graphene oxide and carbon dots. An outline of the scientific development of multifunctional CNPs concerning oral disorders will be given before talking about the significant influence of CNPs on dental health. Some of these illnesses include Periodontitis, oral infections, dental caries, dental pulp disorders, dentin and dental root infections, and PI. We also review the remaining research and application barriers for carbon-based NPs and possible future problems.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"1-36"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17435390.2025.2454277","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The mouth cavity is the second most complex microbial community in the human body. It is composed of bacteria, viruses, fungi, and protozoa. An imbalance in the oral microbiota may lead to various conditions, including caries, soft tissue infections, periodontitis, root canal infections, peri-implantitis (PI), pulpitis, candidiasis, and denture stomatitis. Additionally, several locally administered antimicrobials have been suggested for dentistry in surgical and non-surgical applications. The main drawbacks are increased antimicrobial resistance, the risk of upsetting the natural microbiota, and hypersensitivity responses. Because of their unique physiochemical characteristics, nanoparticles (NPs) can circumvent antibiotic-resistance mechanisms and exert antimicrobial action via a variety of new bactericidal routes. Because of their anti-microbial properties, carbon-based NPs are becoming more and more effective antibacterial agents. Periodontitis, mouth infections, PI, dentin and root infections, and other dental diseases are among the conditions that may be treated using carbon NPs (CNPs) like graphene oxide and carbon dots. An outline of the scientific development of multifunctional CNPs concerning oral disorders will be given before talking about the significant influence of CNPs on dental health. Some of these illnesses include Periodontitis, oral infections, dental caries, dental pulp disorders, dentin and dental root infections, and PI. We also review the remaining research and application barriers for carbon-based NPs and possible future problems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanotoxicology
Nanotoxicology 医学-毒理学
CiteScore
10.10
自引率
4.00%
发文量
45
审稿时长
3.5 months
期刊介绍: Nanotoxicology invites contributions addressing research relating to the potential for human and environmental exposure, hazard and risk associated with the use and development of nano-structured materials. In this context, the term nano-structured materials has a broad definition, including ‘materials with at least one dimension in the nanometer size range’. These nanomaterials range from nanoparticles and nanomedicines, to nano-surfaces of larger materials and composite materials. The range of nanomaterials in use and under development is extremely diverse, so this journal includes a range of materials generated for purposeful delivery into the body (food, medicines, diagnostics and prosthetics), to consumer products (e.g. paints, cosmetics, electronics and clothing), and particles designed for environmental applications (e.g. remediation). It is the nano-size range if these materials which unifies them and defines the scope of Nanotoxicology . While the term ‘toxicology’ indicates risk, the journal Nanotoxicology also aims to encompass studies that enhance safety during the production, use and disposal of nanomaterials. Well-controlled studies demonstrating a lack of exposure, hazard or risk associated with nanomaterials, or studies aiming to improve biocompatibility are welcomed and encouraged, as such studies will lead to an advancement of nanotechnology. Furthermore, many nanoparticles are developed with the intention to improve human health (e.g. antimicrobial agents), and again, such articles are encouraged. In order to promote quality, Nanotoxicology will prioritise publications that have demonstrated characterisation of the nanomaterials investigated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信