Adhityo Wicaksono, Karlia Meitha, Kiew-Lian Wan, Mohd Noor Mat Isa, Arli Aditya Parikesit, Jeanmaire Molina
{"title":"<i>Hairpin in a haystack</i>: <i>In silico</i> identification and characterization of plant-conserved microRNA in Rafflesiaceae.","authors":"Adhityo Wicaksono, Karlia Meitha, Kiew-Lian Wan, Mohd Noor Mat Isa, Arli Aditya Parikesit, Jeanmaire Molina","doi":"10.1515/biol-2022-1033","DOIUrl":null,"url":null,"abstract":"<p><p>Rafflesiaceae is a family of endangered plants whose members are solely parasitic to the tropical grape vine <i>Tetrastigma</i> (Vitaceae). Currently, the genetics of their crosstalk with the host remains unexplored. In this study, we use homology-based <i>in silico</i> approaches to characterize micro-RNAs (miRNAs) expressed by <i>Sapria himalayana</i> and <i>Rafflesia cantleyi</i> from published omics data. Derived from secondary structures or hairpins, miRNAs are small regulators of gene expression. We found that some plant-conserved miRNA still exists in Rafflesiaceae. Out of 9 highly conserved miRNA families in plants, 7 families (156/157, 159/319, 160, 165/166, 171, 172, 390) were identified with a total of 22 variants across Rafflesiaceae. Some miRNAs were missing endogenous targets and may have evolved to target host miRNA, though this requires experimental verification. Rafflesiaceae miRNA promoters are mostly inducible by ethylene that mediates stress response in the host but could be perceived by the parasites as a signal for growth. This study provides evidence that certain miRNAs with ancient origins in land plants still exist in Rafflesiaceae, though some may have been coopted by parasites to target host genes.</p>","PeriodicalId":19605,"journal":{"name":"Open Life Sciences","volume":"20 1","pages":"20221033"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773456/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/biol-2022-1033","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rafflesiaceae is a family of endangered plants whose members are solely parasitic to the tropical grape vine Tetrastigma (Vitaceae). Currently, the genetics of their crosstalk with the host remains unexplored. In this study, we use homology-based in silico approaches to characterize micro-RNAs (miRNAs) expressed by Sapria himalayana and Rafflesia cantleyi from published omics data. Derived from secondary structures or hairpins, miRNAs are small regulators of gene expression. We found that some plant-conserved miRNA still exists in Rafflesiaceae. Out of 9 highly conserved miRNA families in plants, 7 families (156/157, 159/319, 160, 165/166, 171, 172, 390) were identified with a total of 22 variants across Rafflesiaceae. Some miRNAs were missing endogenous targets and may have evolved to target host miRNA, though this requires experimental verification. Rafflesiaceae miRNA promoters are mostly inducible by ethylene that mediates stress response in the host but could be perceived by the parasites as a signal for growth. This study provides evidence that certain miRNAs with ancient origins in land plants still exist in Rafflesiaceae, though some may have been coopted by parasites to target host genes.
期刊介绍:
Open Life Sciences (previously Central European Journal of Biology) is a fast growing peer-reviewed journal, devoted to scholarly research in all areas of life sciences, such as molecular biology, plant science, biotechnology, cell biology, biochemistry, biophysics, microbiology and virology, ecology, differentiation and development, genetics and many others. Open Life Sciences assures top quality of published data through critical peer review and editorial involvement throughout the whole publication process. Thanks to the Open Access model of publishing, it also offers unrestricted access to published articles for all users.