Hairpin in a haystack: In silico identification and characterization of plant-conserved microRNA in Rafflesiaceae.

IF 1.7 4区 生物学 Q3 BIOLOGY
Open Life Sciences Pub Date : 2025-01-27 eCollection Date: 2025-01-01 DOI:10.1515/biol-2022-1033
Adhityo Wicaksono, Karlia Meitha, Kiew-Lian Wan, Mohd Noor Mat Isa, Arli Aditya Parikesit, Jeanmaire Molina
{"title":"<i>Hairpin in a haystack</i>: <i>In silico</i> identification and characterization of plant-conserved microRNA in Rafflesiaceae.","authors":"Adhityo Wicaksono, Karlia Meitha, Kiew-Lian Wan, Mohd Noor Mat Isa, Arli Aditya Parikesit, Jeanmaire Molina","doi":"10.1515/biol-2022-1033","DOIUrl":null,"url":null,"abstract":"<p><p>Rafflesiaceae is a family of endangered plants whose members are solely parasitic to the tropical grape vine <i>Tetrastigma</i> (Vitaceae). Currently, the genetics of their crosstalk with the host remains unexplored. In this study, we use homology-based <i>in silico</i> approaches to characterize micro-RNAs (miRNAs) expressed by <i>Sapria himalayana</i> and <i>Rafflesia cantleyi</i> from published omics data. Derived from secondary structures or hairpins, miRNAs are small regulators of gene expression. We found that some plant-conserved miRNA still exists in Rafflesiaceae. Out of 9 highly conserved miRNA families in plants, 7 families (156/157, 159/319, 160, 165/166, 171, 172, 390) were identified with a total of 22 variants across Rafflesiaceae. Some miRNAs were missing endogenous targets and may have evolved to target host miRNA, though this requires experimental verification. Rafflesiaceae miRNA promoters are mostly inducible by ethylene that mediates stress response in the host but could be perceived by the parasites as a signal for growth. This study provides evidence that certain miRNAs with ancient origins in land plants still exist in Rafflesiaceae, though some may have been coopted by parasites to target host genes.</p>","PeriodicalId":19605,"journal":{"name":"Open Life Sciences","volume":"20 1","pages":"20221033"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773456/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/biol-2022-1033","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Rafflesiaceae is a family of endangered plants whose members are solely parasitic to the tropical grape vine Tetrastigma (Vitaceae). Currently, the genetics of their crosstalk with the host remains unexplored. In this study, we use homology-based in silico approaches to characterize micro-RNAs (miRNAs) expressed by Sapria himalayana and Rafflesia cantleyi from published omics data. Derived from secondary structures or hairpins, miRNAs are small regulators of gene expression. We found that some plant-conserved miRNA still exists in Rafflesiaceae. Out of 9 highly conserved miRNA families in plants, 7 families (156/157, 159/319, 160, 165/166, 171, 172, 390) were identified with a total of 22 variants across Rafflesiaceae. Some miRNAs were missing endogenous targets and may have evolved to target host miRNA, though this requires experimental verification. Rafflesiaceae miRNA promoters are mostly inducible by ethylene that mediates stress response in the host but could be perceived by the parasites as a signal for growth. This study provides evidence that certain miRNAs with ancient origins in land plants still exist in Rafflesiaceae, though some may have been coopted by parasites to target host genes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
4.50%
发文量
131
审稿时长
43 weeks
期刊介绍: Open Life Sciences (previously Central European Journal of Biology) is a fast growing peer-reviewed journal, devoted to scholarly research in all areas of life sciences, such as molecular biology, plant science, biotechnology, cell biology, biochemistry, biophysics, microbiology and virology, ecology, differentiation and development, genetics and many others. Open Life Sciences assures top quality of published data through critical peer review and editorial involvement throughout the whole publication process. Thanks to the Open Access model of publishing, it also offers unrestricted access to published articles for all users.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信