Triptolide reverses cis‑diamminedichloroplatinum resistance in esophageal squamous cell carcinoma by suppressing glycolysis and causing mitochondrial malfunction.

IF 3.4 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Molecular medicine reports Pub Date : 2025-03-01 Epub Date: 2025-01-31 DOI:10.3892/mmr.2025.13439
Kuiyuan Liu, Jia Liu, Tiebao Meng, Nan Wu, Juntao Liu, Mingxu Qiao, Liangyi Dong, Jingeng Liu
{"title":"Triptolide reverses cis‑diamminedichloroplatinum resistance in esophageal squamous cell carcinoma by suppressing glycolysis and causing mitochondrial malfunction.","authors":"Kuiyuan Liu, Jia Liu, Tiebao Meng, Nan Wu, Juntao Liu, Mingxu Qiao, Liangyi Dong, Jingeng Liu","doi":"10.3892/mmr.2025.13439","DOIUrl":null,"url":null,"abstract":"<p><p>The present study investigated the sensitization mechanism of triptolide (TPL) in esophageal squamous cell carcinoma (ESCC) resistant to cis‑diamminedichloroplatinum (CDDP). CDDP‑resistant TE‑1/CDDP and KYSE30/CDDP cells were created using an incremental drug concentration approach. TPL and CDDP treatment conditions were screened based on the Cell Counting Kit‑8 cell viability assay and cell proliferation was detected using 5‑ethynyl‑2'‑deoxyuridine and clone formation assays. Flow cytometry combined with Hoechst 33258 staining was used to assess cell cycle progression and apoptosis. Scratch healing assay, Transwell assay and western blotting were used to investigate the malignant behaviors of the cells. Changes in cellular glycolysis were investigated by measuring glucose uptake, lactate production and the levels of related regulatory factors. Changes in mitochondrial function were examined by detecting ATP and reactive oxygen species levels, as well as mitochondrial membrane potential and cytochrome c release. Furthermore, a nude mouse subcutaneous graft tumor model assay was used to assess the in vivo effect of TPL. <i>In vitro</i> dosages of TPL and CDDP were tested at 2 nM and 4 <i>µ</i>M, respectively. Notably, TPL decreased the proliferation, migration, invasion and epithelial‑mesenchymal transition of CDDP‑resistant ESCC cells, increased their apoptosis and significantly suppressed tumor growth in a nude mouse model of ESCC. TPL was shown to have a strong CDDP‑sensitizing effect <i>in vitro</i> and <i>in vivo</i> and its mechanism may involve inhibiting anaerobic glycolysis and causing mitochondrial energy metabolism impairment to induce apoptosis. In conclusion, TPL may be considered a potential CDDP sensitizer with substantial clinical implications for ESCC therapy.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"31 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular medicine reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/mmr.2025.13439","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The present study investigated the sensitization mechanism of triptolide (TPL) in esophageal squamous cell carcinoma (ESCC) resistant to cis‑diamminedichloroplatinum (CDDP). CDDP‑resistant TE‑1/CDDP and KYSE30/CDDP cells were created using an incremental drug concentration approach. TPL and CDDP treatment conditions were screened based on the Cell Counting Kit‑8 cell viability assay and cell proliferation was detected using 5‑ethynyl‑2'‑deoxyuridine and clone formation assays. Flow cytometry combined with Hoechst 33258 staining was used to assess cell cycle progression and apoptosis. Scratch healing assay, Transwell assay and western blotting were used to investigate the malignant behaviors of the cells. Changes in cellular glycolysis were investigated by measuring glucose uptake, lactate production and the levels of related regulatory factors. Changes in mitochondrial function were examined by detecting ATP and reactive oxygen species levels, as well as mitochondrial membrane potential and cytochrome c release. Furthermore, a nude mouse subcutaneous graft tumor model assay was used to assess the in vivo effect of TPL. In vitro dosages of TPL and CDDP were tested at 2 nM and 4 µM, respectively. Notably, TPL decreased the proliferation, migration, invasion and epithelial‑mesenchymal transition of CDDP‑resistant ESCC cells, increased their apoptosis and significantly suppressed tumor growth in a nude mouse model of ESCC. TPL was shown to have a strong CDDP‑sensitizing effect in vitro and in vivo and its mechanism may involve inhibiting anaerobic glycolysis and causing mitochondrial energy metabolism impairment to induce apoptosis. In conclusion, TPL may be considered a potential CDDP sensitizer with substantial clinical implications for ESCC therapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular medicine reports
Molecular medicine reports 医学-病理学
CiteScore
7.60
自引率
0.00%
发文量
321
审稿时长
1.5 months
期刊介绍: Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信