N-Acetyl Cysteine and Vitamin C Modulate the Antibiotic Efficacy Against Escherichia coli Cells.

IF 2.3 4区 医学 Q3 INFECTIOUS DISEASES
Microbial drug resistance Pub Date : 2025-03-01 Epub Date: 2025-01-31 DOI:10.1089/mdr.2024.0135
Princi Sharma, Ram Kumar, Anushka Bari, Sudheer Kumar Singh
{"title":"N-Acetyl Cysteine and Vitamin C Modulate the Antibiotic Efficacy Against <i>Escherichia coli</i> Cells.","authors":"Princi Sharma, Ram Kumar, Anushka Bari, Sudheer Kumar Singh","doi":"10.1089/mdr.2024.0135","DOIUrl":null,"url":null,"abstract":"<p><p>Supplements with their own beneficial effect on hosts are consumed by us. N-acetyl cysteine (NAC) and Vitamin C (Vit C) are antioxidants and supplements, consumed for their beneficial properties. The present investigation evaluates the effect of their antioxidant property on antibiotic efficacy against <i>Escherichia coli</i> cells from different physiological states, including exponential and stationary-phase, cell aggregates, and <i>in-vitro</i> stress-induced persister cells. Survival was measured in cfu/mL by cfu (colony-forming unit) counting, with efficacy determined by log-fold change in survival by comparing CFUs in antibiotics alone and antibiotic + antioxidant combinations. Fluoroquinolones in the presence of NAC reduced ∼1 log CFUs of log-phase and persister cells, while Vit C reduced CFUs (∼1-3-log increase) of cells from all physiological states. Aminoglycosides results were inconclusive; streptomycin's activity declined (∼1-3-log increase in survival), whereas amikacin's activity potentiated (∼1-log reduction in cfu/mL). Rifampicin's showed reduced activity (∼2-3 log increase in survival) with Vit C in all the states and a ∼1-2 log increase with NAC, especially in cell aggregates and persisters. Beta-lactams activity showed variability, with amoxicillin and ampicillin not being influenced, but ceftriaxone showed significant reduction of efficacy (∼2-3-log increase in survival) in all the treatments. The findings suggest that the overall impact of antioxidants on antibiotic efficacy varies depending on the antibiotic class.</p>","PeriodicalId":18701,"journal":{"name":"Microbial drug resistance","volume":" ","pages":"87-93"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial drug resistance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/mdr.2024.0135","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Supplements with their own beneficial effect on hosts are consumed by us. N-acetyl cysteine (NAC) and Vitamin C (Vit C) are antioxidants and supplements, consumed for their beneficial properties. The present investigation evaluates the effect of their antioxidant property on antibiotic efficacy against Escherichia coli cells from different physiological states, including exponential and stationary-phase, cell aggregates, and in-vitro stress-induced persister cells. Survival was measured in cfu/mL by cfu (colony-forming unit) counting, with efficacy determined by log-fold change in survival by comparing CFUs in antibiotics alone and antibiotic + antioxidant combinations. Fluoroquinolones in the presence of NAC reduced ∼1 log CFUs of log-phase and persister cells, while Vit C reduced CFUs (∼1-3-log increase) of cells from all physiological states. Aminoglycosides results were inconclusive; streptomycin's activity declined (∼1-3-log increase in survival), whereas amikacin's activity potentiated (∼1-log reduction in cfu/mL). Rifampicin's showed reduced activity (∼2-3 log increase in survival) with Vit C in all the states and a ∼1-2 log increase with NAC, especially in cell aggregates and persisters. Beta-lactams activity showed variability, with amoxicillin and ampicillin not being influenced, but ceftriaxone showed significant reduction of efficacy (∼2-3-log increase in survival) in all the treatments. The findings suggest that the overall impact of antioxidants on antibiotic efficacy varies depending on the antibiotic class.

n -乙酰半胱氨酸和维生素C调节抗生素对大肠杆菌细胞的疗效。
对宿主有益的补品被我们消耗掉了。n -乙酰半胱氨酸(NAC)和维生素C (Vit C)是抗氧化剂和补充剂,因其有益的特性而被食用。本研究评估了它们的抗氧化性能对不同生理状态的大肠杆菌细胞(包括指数期和稳定期、细胞聚集体和体外应激诱导的持久性细胞)的抗生素疗效的影响。通过菌落形成单位(cfu)计数以cfu/mL衡量生存,通过比较抗生素单独使用和抗生素+抗氧化剂联合使用的cfu,以生存的对数倍变化来确定疗效。氟喹诺酮类药物在NAC的存在下降低了对数相细胞和持久性细胞的~ 1 log cfu,而Vit C降低了所有生理状态细胞的cfu(增加~ 1-3 log)。氨基糖苷类结果尚无定论;链霉素的活性下降(生存期增加~ 1-3-log),而阿米卡星的活性增强(降低~ 1-log的cfu/mL)。在所有状态下,利福平对Vit C的活性降低(存活时间增加~ 2-3 log),对NAC的活性增加~ 1-2 log,尤其是在细胞聚集体和持续体中。β -内酰胺类活性表现出可变性,阿莫西林和氨苄西林不受影响,但头孢曲松在所有治疗中均表现出显著的疗效降低(生存期增加~ 2-3-log)。研究结果表明,抗氧化剂对抗生素疗效的总体影响因抗生素种类而异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial drug resistance
Microbial drug resistance 医学-传染病学
CiteScore
6.00
自引率
3.80%
发文量
118
审稿时长
6-12 weeks
期刊介绍: Microbial Drug Resistance (MDR) is an international, peer-reviewed journal that covers the global spread and threat of multi-drug resistant clones of major pathogens that are widely documented in hospitals and the scientific community. The Journal addresses the serious challenges of trying to decipher the molecular mechanisms of drug resistance. MDR provides a multidisciplinary forum for peer-reviewed original publications as well as topical reviews and special reports. MDR coverage includes: Molecular biology of resistance mechanisms Virulence genes and disease Molecular epidemiology Drug design Infection control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信