Chemical etching of silicon assisted by graphene oxide under negative electric bias†

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yuta Goto, Toru Utsunomiya, Takashi Ichii and Hiroyuki Sugimura
{"title":"Chemical etching of silicon assisted by graphene oxide under negative electric bias†","authors":"Yuta Goto, Toru Utsunomiya, Takashi Ichii and Hiroyuki Sugimura","doi":"10.1039/D4NA00825A","DOIUrl":null,"url":null,"abstract":"<p >Chemical etching of silicon assisted by graphene oxide (GO) has been attracting attention as a new method to fabricate micro- or nano-structures. GO promotes the reduction of an oxidant, and holes are injected into silicon, resulting in the preferential dissolution of the silicon under GO. In the conventional etching method with GO, the selectivity of the etching was low due to the stain etching caused by nitric acid. We developed an etching method that applies a negative bias to the p-type silicon substrate. The silicon under GO was more selectively etched in an etchant consisting of hydrofluoric acid and nitric acid than the silicon uncovered by GO. We assume that this is attributed to the difference in hole concentration in the silicon under GO and in the bare silicon. In addition, the in-plane diffusion of holes in silicon is suppressed by this method, resulting in the formation of highly anisotropic pores. From this study, we found that GO-assisted silicon etching occurs with a similar principle to metal-assisted chemical etching. The negative-bias etching with GO has the potential to be a simple and highly anisotropic microfabrication method.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" 6","pages":" 1596-1602"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774252/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/na/d4na00825a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemical etching of silicon assisted by graphene oxide (GO) has been attracting attention as a new method to fabricate micro- or nano-structures. GO promotes the reduction of an oxidant, and holes are injected into silicon, resulting in the preferential dissolution of the silicon under GO. In the conventional etching method with GO, the selectivity of the etching was low due to the stain etching caused by nitric acid. We developed an etching method that applies a negative bias to the p-type silicon substrate. The silicon under GO was more selectively etched in an etchant consisting of hydrofluoric acid and nitric acid than the silicon uncovered by GO. We assume that this is attributed to the difference in hole concentration in the silicon under GO and in the bare silicon. In addition, the in-plane diffusion of holes in silicon is suppressed by this method, resulting in the formation of highly anisotropic pores. From this study, we found that GO-assisted silicon etching occurs with a similar principle to metal-assisted chemical etching. The negative-bias etching with GO has the potential to be a simple and highly anisotropic microfabrication method.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信