{"title":"Recent advancements in the understanding of the alterations in mitochondrial biogenesis in Alzheimer's disease.","authors":"Shreya Singh, Rakesh Kumar Singh","doi":"10.1007/s11033-025-10297-6","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a common neurodegenerative disease characterized by progressive memory loss and cognitive decline. The processes underlying the pathophysiology of AD are still not fully understood despite a great deal of research. Since mitochondrial dysfunction affects cellular energy metabolism, oxidative stress, and neuronal survival, it is becoming increasingly clear that it plays a major role in the development of AD. This review summarizes the recent developments of mitochondrial dysfunction in AD, emphasizing mitochondrial biogenesis, dynamics, axonal transport, interactions between endoplasmic reticulum and mitochondria, mitophagy, and mitochondrial proteostasis. It emphasizes how tau and amyloid-beta (Aβ) proteins worsen mitochondrial and synaptic dysfunction by impairing adenosine triphosphate (ATP) synthesis, causing oxidative stress, and upsetting equilibrium. Additionally, important processes controlling mitochondrial activity and their correlation to the brain health are also discussed. One of the promising therapeutic approaches to lessen neurodegeneration and cognitive decline in AD is to improve mitochondrial activity. This study highlights possible directions for creating focused therapies to impede the advancement of AD through incorporating knowledge of mitochondrial biogenesis and its related mechanisms.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"52 1","pages":"173"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11033-025-10297-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease characterized by progressive memory loss and cognitive decline. The processes underlying the pathophysiology of AD are still not fully understood despite a great deal of research. Since mitochondrial dysfunction affects cellular energy metabolism, oxidative stress, and neuronal survival, it is becoming increasingly clear that it plays a major role in the development of AD. This review summarizes the recent developments of mitochondrial dysfunction in AD, emphasizing mitochondrial biogenesis, dynamics, axonal transport, interactions between endoplasmic reticulum and mitochondria, mitophagy, and mitochondrial proteostasis. It emphasizes how tau and amyloid-beta (Aβ) proteins worsen mitochondrial and synaptic dysfunction by impairing adenosine triphosphate (ATP) synthesis, causing oxidative stress, and upsetting equilibrium. Additionally, important processes controlling mitochondrial activity and their correlation to the brain health are also discussed. One of the promising therapeutic approaches to lessen neurodegeneration and cognitive decline in AD is to improve mitochondrial activity. This study highlights possible directions for creating focused therapies to impede the advancement of AD through incorporating knowledge of mitochondrial biogenesis and its related mechanisms.
期刊介绍:
Molecular Biology Reports publishes original research papers and review articles that demonstrate novel molecular and cellular findings in both eukaryotes (animals, plants, algae, funghi) and prokaryotes (bacteria and archaea).The journal publishes results of both fundamental and translational research as well as new techniques that advance experimental progress in the field and presents original research papers, short communications and (mini-) reviews.