Application of different lights in solving the marine biofouling problem of uranium extraction from seawater

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Meng Yan, Dadong Shao
{"title":"Application of different lights in solving the marine biofouling problem of uranium extraction from seawater","authors":"Meng Yan,&nbsp;Dadong Shao","doi":"10.1016/j.jphotobiol.2025.113114","DOIUrl":null,"url":null,"abstract":"<div><div>Marine biofouling remains a big problem of uranium (U(VI)) extraction from seawater. To better utilize sunlight in future, the anti-biofouling properties of typical light sources were evaluated, and ultraviolet (UV) light shows best anti-biofouling capability among studied lights. UV light can damage the cellular structure and intercept the proliferation of marine microorganisms (such as <em>V. alginolyticus</em>), and further control its extracellular polymeric substances (EPS). Microorganism community results clarify that UV light well represses the reproduction and survival of marine microorganisms under different conditions (such as temperature and region), which is in favor of U(VI) extraction. The adsorption capacity of classical U(VI) extraction material poly(amidoxime) (PAO) for U(VI) outstandingly recycled from 47.5 mg/g to 68.5 mg/g after UV irradiated for 12 h at pH 8.2 and 25 °C. UV light can well solve the marine biofouling problem of U(VI) extraction from seawater.</div></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"264 ","pages":"Article 113114"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of photochemistry and photobiology. B, Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S101113442500017X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Marine biofouling remains a big problem of uranium (U(VI)) extraction from seawater. To better utilize sunlight in future, the anti-biofouling properties of typical light sources were evaluated, and ultraviolet (UV) light shows best anti-biofouling capability among studied lights. UV light can damage the cellular structure and intercept the proliferation of marine microorganisms (such as V. alginolyticus), and further control its extracellular polymeric substances (EPS). Microorganism community results clarify that UV light well represses the reproduction and survival of marine microorganisms under different conditions (such as temperature and region), which is in favor of U(VI) extraction. The adsorption capacity of classical U(VI) extraction material poly(amidoxime) (PAO) for U(VI) outstandingly recycled from 47.5 mg/g to 68.5 mg/g after UV irradiated for 12 h at pH 8.2 and 25 °C. UV light can well solve the marine biofouling problem of U(VI) extraction from seawater.

Abstract Image

不同光源在解决海水提铀海洋生物污染问题中的应用。
从海水中提取铀(U(VI))时,海洋生物污染仍然是一个大问题。为了更好地利用太阳光,对典型光源的抗生物污性能进行了评价,其中紫外光的抗生物污性能最好。紫外线可以破坏细胞结构,阻断海洋微生物(如溶藻弧菌)的增殖,并进一步控制其胞外聚合物质(EPS)。微生物群落结果表明,紫外光在不同条件下(如温度和区域)对海洋微生物的繁殖和生存有较好的抑制作用,这有利于U(VI)的提取。经典的U(VI)提取材料聚偕胺肟(PAO)在pH 8.2、25℃条件下紫外照射12 h后,对U(VI)的吸附量从47.5 mg/g降至68.5 mg/g。紫外光可以很好地解决海水中提取U(VI)的海洋生物污染问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.10
自引率
1.90%
发文量
161
审稿时长
37 days
期刊介绍: The Journal of Photochemistry and Photobiology B: Biology provides a forum for the publication of papers relating to the various aspects of photobiology, as well as a means for communication in this multidisciplinary field. The scope includes: - Bioluminescence - Chronobiology - DNA repair - Environmental photobiology - Nanotechnology in photobiology - Photocarcinogenesis - Photochemistry of biomolecules - Photodynamic therapy - Photomedicine - Photomorphogenesis - Photomovement - Photoreception - Photosensitization - Photosynthesis - Phototechnology - Spectroscopy of biological systems - UV and visible radiation effects and vision.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信