Turning residues into valuable compounds: organic waste conversion into odd-chain fatty acids via the carboxylate platform by recombinant oleaginous yeast.

IF 4.3 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Marta de Vicente, Cristina Gonzalez-Fernández, Jean Marc Nicaud, Elia Tomás-Pejó
{"title":"Turning residues into valuable compounds: organic waste conversion into odd-chain fatty acids via the carboxylate platform by recombinant oleaginous yeast.","authors":"Marta de Vicente, Cristina Gonzalez-Fernández, Jean Marc Nicaud, Elia Tomás-Pejó","doi":"10.1186/s12934-025-02647-7","DOIUrl":null,"url":null,"abstract":"<p><p>Environmental concerns are rising the need to find cost-effective alternatives to fossil oils. In this sense, short-chain fatty acids (SCFAs) are proposed as carbon source for microbial oils production that can be converted into oleochemicals. This investigation took advantage of the outstanding traits of recombinant Yarrowia lipolytica strains to assess the conversion of SCFAs derived from real digestates into odd-chain fatty acids (OCFA). High yeast OCFAs content was aimed by using two engineered strains (Y. lipolytica JMY7780 and JMY7782). Batch and two-step batch fermentations were performed, reaching high lipid content (40.8% w/w) and lipid yield (0.07 g/g) with JMY7782, which overexpresses propionyl-CoA synthase. Fed-batch fermentation with an acetic acid pulse after 24 h was also carried out to promote SCFAs consumption and OCFAs production. In this case, SCFAs consumption rate increased and JMY7782 was able to accumulate up to 60.4% OCFAs of the total lipids produced from food waste-derived carbon sources.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"32"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776196/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-025-02647-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Environmental concerns are rising the need to find cost-effective alternatives to fossil oils. In this sense, short-chain fatty acids (SCFAs) are proposed as carbon source for microbial oils production that can be converted into oleochemicals. This investigation took advantage of the outstanding traits of recombinant Yarrowia lipolytica strains to assess the conversion of SCFAs derived from real digestates into odd-chain fatty acids (OCFA). High yeast OCFAs content was aimed by using two engineered strains (Y. lipolytica JMY7780 and JMY7782). Batch and two-step batch fermentations were performed, reaching high lipid content (40.8% w/w) and lipid yield (0.07 g/g) with JMY7782, which overexpresses propionyl-CoA synthase. Fed-batch fermentation with an acetic acid pulse after 24 h was also carried out to promote SCFAs consumption and OCFAs production. In this case, SCFAs consumption rate increased and JMY7782 was able to accumulate up to 60.4% OCFAs of the total lipids produced from food waste-derived carbon sources.

将残留物转化为有价值的化合物:重组产油酵母通过羧酸平台将有机废物转化为奇链脂肪酸。
对环境的担忧日益加剧,需要找到具有成本效益的化石油替代品。从这个意义上说,短链脂肪酸(SCFAs)被认为是微生物油脂生产的碳源,可以转化为油脂化学品。本研究利用重组多脂耶氏菌菌株的突出特性,评估了从真实消化液中提取的短链脂肪酸转化为奇链脂肪酸(OCFA)的能力。利用聚脂Y. JMY7780和JMY7782这两种工程菌株对酵母OCFAs含量进行了研究。用过表达丙酰辅酶a合成酶的JMY7782进行分批和两步分批发酵,获得了较高的脂质含量(40.8% w/w)和脂质产量(0.07 g/g)。在24 h后进行醋酸脉冲补料分批发酵,以促进scfa的消耗和ocfa的生产。在这种情况下,SCFAs的消耗率增加,JMY7782能够积累食物垃圾碳源产生的总脂质中高达60.4%的OCFAs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Cell Factories
Microbial Cell Factories 工程技术-生物工程与应用微生物
CiteScore
9.30
自引率
4.70%
发文量
235
审稿时长
2.3 months
期刊介绍: Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology. The journal is divided into the following editorial sections: -Metabolic engineering -Synthetic biology -Whole-cell biocatalysis -Microbial regulations -Recombinant protein production/bioprocessing -Production of natural compounds -Systems biology of cell factories -Microbial production processes -Cell-free systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信