Biomarker analysis from complex biofluids by an on-chip chemically modified light-controlled vertical nanopillar array device.

IF 13.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Lanka Tata Rao, Adva Raz, Fernando Patolsky
{"title":"Biomarker analysis from complex biofluids by an on-chip chemically modified light-controlled vertical nanopillar array device.","authors":"Lanka Tata Rao, Adva Raz, Fernando Patolsky","doi":"10.1038/s41596-024-01124-6","DOIUrl":null,"url":null,"abstract":"<p><p>Nanostructured devices have proven useful in a broad range of applications, from diagnosing diseases to discovering and screening new drug molecules. We developed vertical silicon nanopillar (SiNP) arrays for on-chip multiplex capture of selected biomolecules using a light-induced release of the array's selectively captured biomarkers. This platform allows the rapid, reusable and quantitative capture and release of a selection of biomarkers, followed by their downstream analysis. Here we outline a standardized protocol for producing the SiNP-based capture-and-release device, which involves the detailed fabrication steps for single-zone nanopillar arrays, their morphological characterization and the chemical modification procedures applied for the anchoring of selective bioreceptors together with the light-controlled on-demand release of the chemical agent. In addition, we provide a detailed approach for the fabrication of a multizone-SiNP array, allowing the simultaneous capture and release of multiple biomarkers of interest. Finally, we demonstrate the entire process of selective and quantitative capture and release of biomolecules from biosamples by means of a commercial low-volume microplate reader system, using green fluorescent protein as a biomarker example. The entire protocol can be conducted within 45 h and requires knowledge in nanoscience, surface chemistry, device micro- and nanofabrication procedures, microfluidics and protein quantification techniques. These SiNP array devices have already demonstrated applications for highly selective and quantitative analysis of a wide range of biological and chemical species, including proteins, nucleic acids, small molecules and ionic species.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-024-01124-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Nanostructured devices have proven useful in a broad range of applications, from diagnosing diseases to discovering and screening new drug molecules. We developed vertical silicon nanopillar (SiNP) arrays for on-chip multiplex capture of selected biomolecules using a light-induced release of the array's selectively captured biomarkers. This platform allows the rapid, reusable and quantitative capture and release of a selection of biomarkers, followed by their downstream analysis. Here we outline a standardized protocol for producing the SiNP-based capture-and-release device, which involves the detailed fabrication steps for single-zone nanopillar arrays, their morphological characterization and the chemical modification procedures applied for the anchoring of selective bioreceptors together with the light-controlled on-demand release of the chemical agent. In addition, we provide a detailed approach for the fabrication of a multizone-SiNP array, allowing the simultaneous capture and release of multiple biomarkers of interest. Finally, we demonstrate the entire process of selective and quantitative capture and release of biomolecules from biosamples by means of a commercial low-volume microplate reader system, using green fluorescent protein as a biomarker example. The entire protocol can be conducted within 45 h and requires knowledge in nanoscience, surface chemistry, device micro- and nanofabrication procedures, microfluidics and protein quantification techniques. These SiNP array devices have already demonstrated applications for highly selective and quantitative analysis of a wide range of biological and chemical species, including proteins, nucleic acids, small molecules and ionic species.

利用片上化学修饰的光控垂直纳米柱阵列装置分析复杂生物流体中的生物标志物。
从诊断疾病到发现和筛选新药分子,纳米结构设备已经被证明在广泛的应用中是有用的。我们开发了垂直硅纳米柱(SiNP)阵列,利用光诱导释放阵列选择性捕获的生物标志物,用于片上多重捕获选定的生物分子。该平台允许快速、可重复使用和定量捕获和释放选定的生物标志物,然后进行下游分析。在这里,我们概述了生产基于sinp的捕获和释放装置的标准化方案,其中包括单区纳米柱阵列的详细制造步骤,它们的形态表征以及用于锚定选择性生物受体的化学修饰程序,以及化学剂的光控按需释放。此外,我们还提供了一种详细的方法来制造多区sinp阵列,允许同时捕获和释放多种感兴趣的生物标志物。最后,我们展示了整个过程的选择性和定量捕获和释放的生物分子从生物样品通过商业低体积微孔板阅读器系统,使用绿色荧光蛋白作为生物标志物的例子。整个程序可以在45小时内完成,并且需要纳米科学、表面化学、器件微和纳米制造程序、微流体和蛋白质定量技术方面的知识。这些SiNP阵列设备已经证明了广泛的生物和化学物种的高选择性和定量分析的应用,包括蛋白质,核酸,小分子和离子物种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信