Revolutionizing green catalysis: a novel amla seed derived biochar modified g-C3N4·SO3H catalyst for sustainable and versatile synthesis of bis-indoles.
{"title":"Revolutionizing green catalysis: a novel amla seed derived biochar modified g-C<sub>3</sub>N<sub>4</sub>·SO<sub>3</sub>H catalyst for sustainable and versatile synthesis of bis-indoles.","authors":"Shivani Soni, Sunita Teli, Pankaj Teli, Shikha Agarwal","doi":"10.1039/d4na00891j","DOIUrl":null,"url":null,"abstract":"<p><p>Catalysis plays a vital role in green chemistry by improving process efficiency, reducing waste, and minimizing environmental impact. A biochar-modified g-C<sub>3</sub>N<sub>4</sub>·SO<sub>3</sub>H (BCNSA) catalyst was developed using biochar derived from amla seed powder and CNSA. CNSA was synthesized <i>via</i> the reaction of g-C<sub>3</sub>N<sub>4</sub> with chlorosulfonic acid. Both components were combined, pyrolyzed, purified, and comprehensively characterized using FTIR, XRD, FE-SEM, EDX, elemental mapping, TGA, and DTA studies to confirm the successful synthesis and structural integrity. The catalyst demonstrated exceptional efficiency in synthesizing bis-indole derivatives through reactions between substituted indoles (indole, 1-methyl indole, and 6-chloro indole) and carbonyl-containing compounds, including isatins (isatin, 7-(trifluoromethyl)isatin, 5-bromo isatin, and 5-fluoro isatin), aldehydes, cyclo-ketones, dimedone, and acetophenones. These reactions were carried out under simplified conditions using water as a green solvent, promoting sustainability and versatility. A total of 21 bis-indole products were synthesized within 5-45 minutes, achieving yields of 80-98% showcasing the catalyst's outstanding performance. Furthermore, the method was scaled up to gram-level synthesis, and green chemistry metrics were evaluated for all the products, highlighting the environmental and economic benefits of this approach.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774277/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4na00891j","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Catalysis plays a vital role in green chemistry by improving process efficiency, reducing waste, and minimizing environmental impact. A biochar-modified g-C3N4·SO3H (BCNSA) catalyst was developed using biochar derived from amla seed powder and CNSA. CNSA was synthesized via the reaction of g-C3N4 with chlorosulfonic acid. Both components were combined, pyrolyzed, purified, and comprehensively characterized using FTIR, XRD, FE-SEM, EDX, elemental mapping, TGA, and DTA studies to confirm the successful synthesis and structural integrity. The catalyst demonstrated exceptional efficiency in synthesizing bis-indole derivatives through reactions between substituted indoles (indole, 1-methyl indole, and 6-chloro indole) and carbonyl-containing compounds, including isatins (isatin, 7-(trifluoromethyl)isatin, 5-bromo isatin, and 5-fluoro isatin), aldehydes, cyclo-ketones, dimedone, and acetophenones. These reactions were carried out under simplified conditions using water as a green solvent, promoting sustainability and versatility. A total of 21 bis-indole products were synthesized within 5-45 minutes, achieving yields of 80-98% showcasing the catalyst's outstanding performance. Furthermore, the method was scaled up to gram-level synthesis, and green chemistry metrics were evaluated for all the products, highlighting the environmental and economic benefits of this approach.