Multi-sample long-read nanopore sequencing of Agabus bipustulatus (Coleoptera: Dytiscidae: Agabinae) mitogenome produces effectively reliable data for downstream analyses.

IF 2.1 3区 农林科学 Q1 ENTOMOLOGY
Olena Bielikova, Ondrej Vargovčík, Zuzana Čiamporová-Zaťovičová, Fedor Čiampor
{"title":"Multi-sample long-read nanopore sequencing of Agabus bipustulatus (Coleoptera: Dytiscidae: Agabinae) mitogenome produces effectively reliable data for downstream analyses.","authors":"Olena Bielikova, Ondrej Vargovčík, Zuzana Čiamporová-Zaťovičová, Fedor Čiampor","doi":"10.1093/jisesa/ieaf009","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial genomes are a rich source of data for various downstream analyses such as population genetics, phylogeny, and systematics. Today it is possible to assemble rapidly large numbers of mitogenomes, mainly employing next-generation sequencing and third-generation sequencing. However, verification of the correctness of the generated sequences is often lacking, especially for noncoding, length-variable parts. Here we have assembled the mitochondrial genome (mitogenome) from four specimens of Agabus bipustulatus (L.) using long-read nanopore sequence data. The use of the latest nanopore chemistry (V14) combined with a comprehensive error correction workflow enabled the generation of mitogenomes with high accuracy and reproducibility, as tested on four samples. The resulting mitogenome is 17,876 bp long, including 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and a control region. Differences in the control region length between samples were minimal. The arrangement of protein-coding genes, transfer RNAs, and ribosomal RNAs is similar to that of the ancestral insect mitogenome. Finally, we used the assembled, well-supported mitogenomes in the phylogenetic analysis of a part of the Dytiscidae related to the studied species and confronted the results with previous hypotheses. Conflicting estimates of their phylogeny suggest that considerably more robust data are required for a plausible sketch of their evolutionary history. Our research has confirmed that readily available third-generation sequencing technologies, such as Oxford Nanopore Technologies, combined with long-read sequencing, offer a highly efficient, reliable, and cost-effective approach to generate complete mitogenomes and potentially other longer regions of the genome. The use of reliable data will ultimately contribute to a deeper understanding and improved conservation strategies for diving beetles and other organisms.</p>","PeriodicalId":16156,"journal":{"name":"Journal of Insect Science","volume":"25 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780178/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jisesa/ieaf009","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondrial genomes are a rich source of data for various downstream analyses such as population genetics, phylogeny, and systematics. Today it is possible to assemble rapidly large numbers of mitogenomes, mainly employing next-generation sequencing and third-generation sequencing. However, verification of the correctness of the generated sequences is often lacking, especially for noncoding, length-variable parts. Here we have assembled the mitochondrial genome (mitogenome) from four specimens of Agabus bipustulatus (L.) using long-read nanopore sequence data. The use of the latest nanopore chemistry (V14) combined with a comprehensive error correction workflow enabled the generation of mitogenomes with high accuracy and reproducibility, as tested on four samples. The resulting mitogenome is 17,876 bp long, including 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and a control region. Differences in the control region length between samples were minimal. The arrangement of protein-coding genes, transfer RNAs, and ribosomal RNAs is similar to that of the ancestral insect mitogenome. Finally, we used the assembled, well-supported mitogenomes in the phylogenetic analysis of a part of the Dytiscidae related to the studied species and confronted the results with previous hypotheses. Conflicting estimates of their phylogeny suggest that considerably more robust data are required for a plausible sketch of their evolutionary history. Our research has confirmed that readily available third-generation sequencing technologies, such as Oxford Nanopore Technologies, combined with long-read sequencing, offer a highly efficient, reliable, and cost-effective approach to generate complete mitogenomes and potentially other longer regions of the genome. The use of reliable data will ultimately contribute to a deeper understanding and improved conservation strategies for diving beetles and other organisms.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Insect Science
Journal of Insect Science 生物-昆虫学
CiteScore
3.70
自引率
0.00%
发文量
80
审稿时长
7.5 months
期刊介绍: The Journal of Insect Science was founded with support from the University of Arizona library in 2001 by Dr. Henry Hagedorn, who served as editor-in-chief until his death in January 2014. The Entomological Society of America was very pleased to add the Journal of Insect Science to its publishing portfolio in 2014. The fully open access journal publishes papers in all aspects of the biology of insects and other arthropods from the molecular to the ecological, and their agricultural and medical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信