The role of green synthesis metal and metal oxide nanoparticles in oral cancer therapy: a review.

IF 4.3 4区 医学 Q1 PHARMACOLOGY & PHARMACY
Journal of Drug Targeting Pub Date : 2025-07-01 Epub Date: 2025-02-08 DOI:10.1080/1061186X.2025.2461091
Songlin Zhou, Yutao Qin, Anwen Lei, Hai Liu, Yi Sun, Jue Zhang, Chao Deng, Yu Chen
{"title":"The role of green synthesis metal and metal oxide nanoparticles in oral cancer therapy: a review.","authors":"Songlin Zhou, Yutao Qin, Anwen Lei, Hai Liu, Yi Sun, Jue Zhang, Chao Deng, Yu Chen","doi":"10.1080/1061186X.2025.2461091","DOIUrl":null,"url":null,"abstract":"<p><p>There are 275,000 new cases of oral cancer (OC) per year, making it the sixth most common cancer in the world. Severe adverse effects, including loss of function, deformity, and systemic toxicity, are familiar with traditional therapies such as radiation, chemotherapy, and surgery; due to their unique properties, nanoparticles (NPs) have emerged as a superior alternative over chemo/radiotherapy and surgery due to their targeting capability, bioavailability, compatibility, and high solubility. Due to their unique properties, metallic NPs have garnered significant attention in OC control. In addition to the fact that metal NPs may be harmful to human cells, the reactive chemicals used to make them pose the same risk, which limits their use in medicine. Green synthesis (GS) is a novel strategy that uses biological materials like yeast, bacteria, fungi, and plant extracts. Compared to more traditional chemical synthesis processes, these are more environmentally benign and manageable for living organisms. This article summarises the GS of NPs made of metals and metal oxides and their anticancer effects on OC. The method's potential benefits and drawbacks in advancing metallic NPs' GS and shaping OC therapy's future were also discussed.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"853-876"},"PeriodicalIF":4.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2025.2461091","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

There are 275,000 new cases of oral cancer (OC) per year, making it the sixth most common cancer in the world. Severe adverse effects, including loss of function, deformity, and systemic toxicity, are familiar with traditional therapies such as radiation, chemotherapy, and surgery; due to their unique properties, nanoparticles (NPs) have emerged as a superior alternative over chemo/radiotherapy and surgery due to their targeting capability, bioavailability, compatibility, and high solubility. Due to their unique properties, metallic NPs have garnered significant attention in OC control. In addition to the fact that metal NPs may be harmful to human cells, the reactive chemicals used to make them pose the same risk, which limits their use in medicine. Green synthesis (GS) is a novel strategy that uses biological materials like yeast, bacteria, fungi, and plant extracts. Compared to more traditional chemical synthesis processes, these are more environmentally benign and manageable for living organisms. This article summarises the GS of NPs made of metals and metal oxides and their anticancer effects on OC. The method's potential benefits and drawbacks in advancing metallic NPs' GS and shaping OC therapy's future were also discussed.

绿色合成金属和金属氧化物纳米颗粒在口腔癌治疗中的作用综述。
每年有275,000例口腔癌(OC)新病例,使其成为世界上第六大常见癌症。严重的不良反应,包括功能丧失、畸形和全身毒性,是放疗、化疗和手术等传统疗法所熟悉的;由于其独特的性质,纳米颗粒(NPs)因其靶向能力、生物利用度、相容性和高溶解度而成为化疗/放疗和手术的最佳选择。由于其独特的性质,金属NPs在OC控制中引起了广泛的关注。除了金属NPs可能对人体细胞有害这一事实外,用于制造它们的活性化学物质也有同样的风险,这限制了它们在医学上的应用。绿色合成(GS)是一种利用酵母、细菌、真菌和植物提取物等生物材料的新型合成技术。与更传统的化学合成工艺相比,这些工艺对生物更环保,更易于管理。本文综述了由金属和金属氧化物制备的纳米粒子及其抗癌作用。讨论了该方法在推进金属NPs的GS和塑造OC治疗未来方面的潜在优点和缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
165
审稿时长
2 months
期刊介绍: Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs. Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信