{"title":"CECT-Based Radiomic Nomogram of Different Machine Learning Models for Differentiating Malignant and Benign Solid-Containing Renal Masses.","authors":"Lu Qian, BinHai Fu, Hong He, Shan Liu, RenCai Lu","doi":"10.2147/JMDH.S502210","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to explore the value of a radiomic nomogram based on contrast-enhanced computed tomography (CECT) for differentiating benign and malignant solid-containing renal masses.</p><p><strong>Materials and methods: </strong>A total of 122 patients with pathologically confirmed benign (n=47) or malignant (n=75) solid-containing renal masses were enrolled in this study. Radiomic features were extracted from the arterial, venous and delayed phases and further analysed by dimensionality reduction and selection. Four mainstream machine learning algorithm training models, namely, support vector machine (SVM), k-nearest neighbour (kNN), light gradient boosting (LightGBM) and logistic regression (LR), were constructed to determine the best classifier model. Univariate and multivariate analyses were used to determine the best clinical characteristics for constructing a clinical model. The radiomic and clinical signatures were integrated to construct a combined radiomic nomogram model. Receiver operating characteristic (ROC) curves and the area under the curve (AUC) were used to evaluate the performance of the radiomic nomogram, radiomic signature, and clinical model.</p><p><strong>Results: </strong>Thirteen radiomic features were selected for the development of the radiomic signature. Among the various radiomic models, the LR model demonstrated superior predictive efficiency and robustness, yielding an AUC of 0.952 in the training cohort and 0.887 in the test cohort. The AUC for the clinical model was 0.854 in the training cohort and 0.747 in the test cohort. Furthermore, the radiomic nomogram, which incorporated sex, age, alcohol consumption history, and the radiomic signature, exhibited excellent discriminative performance, yielding an AUC of 0.973 in the training cohort and 0.900 in the test cohort.</p><p><strong>Conclusion: </strong>The radiomic nomogram based on CECT offers a promising and noninvasive approach for distinguishing malignant from benign solid renal masses. This tool can be used to guide treatment strategies effectively and can provide valuable insights for clinicians.</p>","PeriodicalId":16357,"journal":{"name":"Journal of Multidisciplinary Healthcare","volume":"18 ","pages":"421-433"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776415/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multidisciplinary Healthcare","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JMDH.S502210","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: This study aimed to explore the value of a radiomic nomogram based on contrast-enhanced computed tomography (CECT) for differentiating benign and malignant solid-containing renal masses.
Materials and methods: A total of 122 patients with pathologically confirmed benign (n=47) or malignant (n=75) solid-containing renal masses were enrolled in this study. Radiomic features were extracted from the arterial, venous and delayed phases and further analysed by dimensionality reduction and selection. Four mainstream machine learning algorithm training models, namely, support vector machine (SVM), k-nearest neighbour (kNN), light gradient boosting (LightGBM) and logistic regression (LR), were constructed to determine the best classifier model. Univariate and multivariate analyses were used to determine the best clinical characteristics for constructing a clinical model. The radiomic and clinical signatures were integrated to construct a combined radiomic nomogram model. Receiver operating characteristic (ROC) curves and the area under the curve (AUC) were used to evaluate the performance of the radiomic nomogram, radiomic signature, and clinical model.
Results: Thirteen radiomic features were selected for the development of the radiomic signature. Among the various radiomic models, the LR model demonstrated superior predictive efficiency and robustness, yielding an AUC of 0.952 in the training cohort and 0.887 in the test cohort. The AUC for the clinical model was 0.854 in the training cohort and 0.747 in the test cohort. Furthermore, the radiomic nomogram, which incorporated sex, age, alcohol consumption history, and the radiomic signature, exhibited excellent discriminative performance, yielding an AUC of 0.973 in the training cohort and 0.900 in the test cohort.
Conclusion: The radiomic nomogram based on CECT offers a promising and noninvasive approach for distinguishing malignant from benign solid renal masses. This tool can be used to guide treatment strategies effectively and can provide valuable insights for clinicians.
期刊介绍:
The Journal of Multidisciplinary Healthcare (JMDH) aims to represent and publish research in healthcare areas delivered by practitioners of different disciplines. This includes studies and reviews conducted by multidisciplinary teams as well as research which evaluates or reports the results or conduct of such teams or healthcare processes in general. The journal covers a very wide range of areas and we welcome submissions from practitioners at all levels and from all over the world. Good healthcare is not bounded by person, place or time and the journal aims to reflect this. The JMDH is published as an open-access journal to allow this wide range of practical, patient relevant research to be immediately available to practitioners who can access and use it immediately upon publication.