Progress and prospects in antisense oligonucleotide-mediated exon skipping therapies for Duchenne muscular dystrophy.

IF 1.8 3区 生物学 Q4 CELL BIOLOGY
Katarzyna Chwalenia, Matthew J A Wood, Thomas C Roberts
{"title":"Progress and prospects in antisense oligonucleotide-mediated exon skipping therapies for Duchenne muscular dystrophy.","authors":"Katarzyna Chwalenia, Matthew J A Wood, Thomas C Roberts","doi":"10.1007/s10974-024-09688-2","DOIUrl":null,"url":null,"abstract":"<p><p>Recent years have seen enormous progress in the field of advanced therapeutics for the progressive muscle wasting disease Duchenne muscular dystrophy (DMD). In particular, four antisense oligonucleotide (ASO) therapies targeting various DMD-causing mutations have achieved FDA approval, marking major milestones in the treatment of this disease. These compounds are designed to induce alternative splicing events that restore the translation reading frame of the dystrophin gene, leading to the generation of internally-deleted, but mostly functional, pseudodystrophin proteins with the potential to compensate for the genetic loss of dystrophin. However, the efficacy of these compounds is very limited, with delivery remaining a key obstacle to effective therapy. There is therefore an urgent need for improved ASO technologies with better efficacy, and with applicability to a wider range of patient mutations. Here we discuss recent developments in ASO therapies for DMD, and future prospects with a focus on ASO chemical modification and bioconjugation strategies.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617802/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Muscle Research and Cell Motility","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10974-024-09688-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent years have seen enormous progress in the field of advanced therapeutics for the progressive muscle wasting disease Duchenne muscular dystrophy (DMD). In particular, four antisense oligonucleotide (ASO) therapies targeting various DMD-causing mutations have achieved FDA approval, marking major milestones in the treatment of this disease. These compounds are designed to induce alternative splicing events that restore the translation reading frame of the dystrophin gene, leading to the generation of internally-deleted, but mostly functional, pseudodystrophin proteins with the potential to compensate for the genetic loss of dystrophin. However, the efficacy of these compounds is very limited, with delivery remaining a key obstacle to effective therapy. There is therefore an urgent need for improved ASO technologies with better efficacy, and with applicability to a wider range of patient mutations. Here we discuss recent developments in ASO therapies for DMD, and future prospects with a focus on ASO chemical modification and bioconjugation strategies.

反义寡核苷酸介导外显子跳跃治疗杜氏肌营养不良的进展与展望。
近年来,在进行性肌肉萎缩病杜氏肌营养不良(DMD)的先进治疗领域取得了巨大进展。特别是,针对各种dmd引起突变的四种反义寡核苷酸(ASO)疗法已获得FDA批准,标志着该疾病治疗的重要里程碑。这些化合物旨在诱导选择性剪接事件,恢复肌营养不良蛋白基因的翻译阅读框,导致产生内部缺失的假肌营养不良蛋白,但大部分是功能性的,具有补偿肌营养不良蛋白遗传损失的潜力。然而,这些化合物的疗效非常有限,递送仍然是有效治疗的关键障碍。因此,迫切需要改进ASO技术,使其具有更好的疗效,并适用于更广泛的患者突变。在这里,我们讨论了ASO治疗DMD的最新进展,并展望了ASO化学修饰和生物偶联策略的未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
21
审稿时长
>12 weeks
期刊介绍: The Journal of Muscle Research and Cell Motility has as its main aim the publication of original research which bears on either the excitation and contraction of muscle, the analysis of any one of the processes involved therein, the processes underlying contractility and motility of animal and plant cells, the toxicology and pharmacology related to contractility, or the formation, dynamics and turnover of contractile structures in muscle and non-muscle cells. Studies describing the impact of pathogenic mutations in genes encoding components of contractile structures in humans or animals are welcome, provided they offer mechanistic insight into the disease process or the underlying gene function. The policy of the Journal is to encourage any form of novel practical study whatever its specialist interest, as long as it falls within this broad field. Theoretical essays are welcome provided that they are concise and suggest practical ways in which they may be tested. Manuscripts reporting new mutations in known disease genes without validation and mechanistic insight will not be considered. It is the policy of the journal that cells lines, hybridomas and DNA clones should be made available by the developers to any qualified investigator. Submission of a manuscript for publication constitutes an agreement of the authors to abide by this principle.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信