Leo Clement, Sebastian Schwarz, Blandine Mahot-Castaing, Antoine Wystrach
{"title":"Is this scenery worth exploring? Insight into the visual encoding of navigating ants.","authors":"Leo Clement, Sebastian Schwarz, Blandine Mahot-Castaing, Antoine Wystrach","doi":"10.1242/jeb.249935","DOIUrl":null,"url":null,"abstract":"<p><p>Solitary foraging insects like desert ants rely heavily on vision for navigation. While ants can learn visual scenes, it is unclear what cues they use to decide if a scene is worth exploring at the first place. To investigate this, we recorded the motor behavior of Cataglyphis velox ants navigating in a virtual reality set-up (VR) and measured their lateral oscillations in response to various unfamiliar visual scenes under both closed-loop and open-loop conditions. In naturalistic-looking panorama, ants display regular oscillations as observed outdoors, allowing them to efficiently scan the scenery. Manipulations of the virtual environment revealed distinct functions served by dynamic and static cues. Dynamic cues, mainly rotational optic flow, regulated the amplitude of oscillations but not their regularity. Conversely, static cues had little impact on the amplitude but were essential for producing regular oscillations. Regularity of oscillations decreased in scenes with only horizontal, only vertical or no edges but was restored in scenes with both edge types together. The actual number of edges, the visual pattern heterogeneity across azimuths, the light intensity or the relative elevation of brighter regions did not affect oscillations. We conclude that ants use a simple but functional heuristic to determine if the visual world is worth exploring, relying on the presence of at least two different edge orientations in the scene.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.249935","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Solitary foraging insects like desert ants rely heavily on vision for navigation. While ants can learn visual scenes, it is unclear what cues they use to decide if a scene is worth exploring at the first place. To investigate this, we recorded the motor behavior of Cataglyphis velox ants navigating in a virtual reality set-up (VR) and measured their lateral oscillations in response to various unfamiliar visual scenes under both closed-loop and open-loop conditions. In naturalistic-looking panorama, ants display regular oscillations as observed outdoors, allowing them to efficiently scan the scenery. Manipulations of the virtual environment revealed distinct functions served by dynamic and static cues. Dynamic cues, mainly rotational optic flow, regulated the amplitude of oscillations but not their regularity. Conversely, static cues had little impact on the amplitude but were essential for producing regular oscillations. Regularity of oscillations decreased in scenes with only horizontal, only vertical or no edges but was restored in scenes with both edge types together. The actual number of edges, the visual pattern heterogeneity across azimuths, the light intensity or the relative elevation of brighter regions did not affect oscillations. We conclude that ants use a simple but functional heuristic to determine if the visual world is worth exploring, relying on the presence of at least two different edge orientations in the scene.
期刊介绍:
Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.