Anthony D Junker, Jason Z Chen, James G DuBose, Nicole M Gerardo
{"title":"Dynamic reciprocal morphological changes in insect hosts and bacterial symbionts.","authors":"Anthony D Junker, Jason Z Chen, James G DuBose, Nicole M Gerardo","doi":"10.1242/jeb.249474","DOIUrl":null,"url":null,"abstract":"<p><p>Symbiotic interactions, central to most life on Earth, are interwoven associations that vary in intimacy and duration. Some of the most well-known examples of symbioses occur between animals and gut bacteria. These associations lead to physiological integration of host and symbionts. The diversity of microbes within animal hosts can make studying them technically challenging. Thus, most science heavily focuses on the animal side of symbioses, limiting study of the microbial symbionts to characterization of their genetic and functional diversity. These limitations are minimized in Heteropteran insects that have specialized midguts that separately house single symbiont species away from ingested food. These insect-bacteria associations allow us to address fundamental questions as to how both hosts and symbionts change to establish a cooperative relationship. In this study, through ex vivo and in vivo observations of cellular behaviors, we explore concurrent structural and cellular dynamics in both the squash bug host (Anasa tristis) and its Caballeronia zhejiangensis symbionts during the initiation of symbiosis. We elucidate how C. zhejiangensis is sequestered within a specialized symbiotic organ within the A. tristis midgut, how the symbiont uses active motility to reach the symbiotic organ, how symbionts colonize host crypts within the organ and how host crypt morphogenesis progresses during the initiation of symbiotic interactions. Our findings provide insight into how dynamic cellular activity and morphological development reciprocally change in both host and symbiont as they establish symbiotic interactions.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.249474","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Symbiotic interactions, central to most life on Earth, are interwoven associations that vary in intimacy and duration. Some of the most well-known examples of symbioses occur between animals and gut bacteria. These associations lead to physiological integration of host and symbionts. The diversity of microbes within animal hosts can make studying them technically challenging. Thus, most science heavily focuses on the animal side of symbioses, limiting study of the microbial symbionts to characterization of their genetic and functional diversity. These limitations are minimized in Heteropteran insects that have specialized midguts that separately house single symbiont species away from ingested food. These insect-bacteria associations allow us to address fundamental questions as to how both hosts and symbionts change to establish a cooperative relationship. In this study, through ex vivo and in vivo observations of cellular behaviors, we explore concurrent structural and cellular dynamics in both the squash bug host (Anasa tristis) and its Caballeronia zhejiangensis symbionts during the initiation of symbiosis. We elucidate how C. zhejiangensis is sequestered within a specialized symbiotic organ within the A. tristis midgut, how the symbiont uses active motility to reach the symbiotic organ, how symbionts colonize host crypts within the organ and how host crypt morphogenesis progresses during the initiation of symbiotic interactions. Our findings provide insight into how dynamic cellular activity and morphological development reciprocally change in both host and symbiont as they establish symbiotic interactions.
期刊介绍:
Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.