Interleukin-1 Receptor-Associated Kinase-3 Aggravates Neuroinflammatory Injury After Intracerebral Hemorrhage via Activation NF-κB/IL-17A Pathway in Mice.

IF 4.2 2区 医学 Q2 IMMUNOLOGY
Journal of Inflammation Research Pub Date : 2025-01-25 eCollection Date: 2025-01-01 DOI:10.2147/JIR.S494611
Jun Wang, Yulong Li, Chunyu Tan, Jinlian Shao, Weitai Tang, Quan Kong, Wenqianjun Sheng, Zhiquan Ding, Feng Li, Jifeng Piao, Dingyi Lv, Libin Hu, Qinghua Wang, Xiaodan Jiang
{"title":"Interleukin-1 Receptor-Associated Kinase-3 Aggravates Neuroinflammatory Injury After Intracerebral Hemorrhage via Activation NF-κB/IL-17A Pathway in Mice.","authors":"Jun Wang, Yulong Li, Chunyu Tan, Jinlian Shao, Weitai Tang, Quan Kong, Wenqianjun Sheng, Zhiquan Ding, Feng Li, Jifeng Piao, Dingyi Lv, Libin Hu, Qinghua Wang, Xiaodan Jiang","doi":"10.2147/JIR.S494611","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Neuroinflammatory reactions are crucial factors in secondary brain damage following intracerebral hemorrhage (ICH). Although previous studies have shown that IRAK3 is involved in immune responses, the potential effects of IRAK3 on ICH remain unclear.</p><p><strong>Methods: </strong>Collagenase IV-induced ICH mouse model. Western blotting was used to determine the expression of IRAK3 at different time points following ICH. Immunofluorescence was used to investigate the cellular localization of IRAK3. The ICH model was treated with recombinant human IRAK3 (rh-IRAK3) or IRAK3 siRNA via an intracerebroventricular injection. The effect of IRAK3 on ICH mice was assessed by Western blotting and short-term and long-term neurological function evaluation. RNA-seq was performed to explore the mechanism by which IRAK3 promotes inflammation after ICH. The mechanisms of IRAK3 and neuroinflammation will be further investigated by Western blotting, qRT-PCR and immunofluorescence. Recombinant IL-17A was used to investigate the connection between IRAK3 and the NF-κB/IL-17A signaling pathway in vivo and in vitro experiments.</p><p><strong>Results: </strong>The expression of IRAK3 increased, peaking at 24 h, followed by a subsequent decrease after ICH. IRAK3 is mainly expressed in the microglia. RNA-seq analysis revealed 1,797 differentially expressed genes around the perihematomal brain tissue after IRAK3 siRNA treatment, with multiple inflammatory pathways being downregulated. Rh-IRAK3 treatment resulted in upregulation of the levels of inflammatory cytokines around the perihematomal tissue and exacerbated neurological function deficits. Furthermore, IRAK3 siRNA treatment markedly decreased the expression of inflammatory cytokines and microglial activation via the NF-κB/IL-17A signaling pathway. Recombinant IL-17A exacerbated the inflammatory response in vivo and in vitro; however, IRAK3 knockdown reversed this process.</p><p><strong>Conclusion: </strong>IRAK3 aggravates neuroinflammation by activating the NF-κB/IL-17A signaling pathway, thereby exacerbating neurological deficits following ICH. Therefore, inhibition IRAK3 may be a promising approach for treating ICH.</p>","PeriodicalId":16107,"journal":{"name":"Journal of Inflammation Research","volume":"18 ","pages":"1167-1189"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776408/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JIR.S494611","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Neuroinflammatory reactions are crucial factors in secondary brain damage following intracerebral hemorrhage (ICH). Although previous studies have shown that IRAK3 is involved in immune responses, the potential effects of IRAK3 on ICH remain unclear.

Methods: Collagenase IV-induced ICH mouse model. Western blotting was used to determine the expression of IRAK3 at different time points following ICH. Immunofluorescence was used to investigate the cellular localization of IRAK3. The ICH model was treated with recombinant human IRAK3 (rh-IRAK3) or IRAK3 siRNA via an intracerebroventricular injection. The effect of IRAK3 on ICH mice was assessed by Western blotting and short-term and long-term neurological function evaluation. RNA-seq was performed to explore the mechanism by which IRAK3 promotes inflammation after ICH. The mechanisms of IRAK3 and neuroinflammation will be further investigated by Western blotting, qRT-PCR and immunofluorescence. Recombinant IL-17A was used to investigate the connection between IRAK3 and the NF-κB/IL-17A signaling pathway in vivo and in vitro experiments.

Results: The expression of IRAK3 increased, peaking at 24 h, followed by a subsequent decrease after ICH. IRAK3 is mainly expressed in the microglia. RNA-seq analysis revealed 1,797 differentially expressed genes around the perihematomal brain tissue after IRAK3 siRNA treatment, with multiple inflammatory pathways being downregulated. Rh-IRAK3 treatment resulted in upregulation of the levels of inflammatory cytokines around the perihematomal tissue and exacerbated neurological function deficits. Furthermore, IRAK3 siRNA treatment markedly decreased the expression of inflammatory cytokines and microglial activation via the NF-κB/IL-17A signaling pathway. Recombinant IL-17A exacerbated the inflammatory response in vivo and in vitro; however, IRAK3 knockdown reversed this process.

Conclusion: IRAK3 aggravates neuroinflammation by activating the NF-κB/IL-17A signaling pathway, thereby exacerbating neurological deficits following ICH. Therefore, inhibition IRAK3 may be a promising approach for treating ICH.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Inflammation Research
Journal of Inflammation Research Immunology and Microbiology-Immunology
CiteScore
6.10
自引率
2.20%
发文量
658
审稿时长
16 weeks
期刊介绍: An international, peer-reviewed, open access, online journal that welcomes laboratory and clinical findings on the molecular basis, cell biology and pharmacology of inflammation.
文献相关原料
公司名称
产品信息
索莱宝
penicillin/streptomycin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信