Puerarin Attenuates Podocyte Damage in Mice With Diabetic Kidney Disease by Modulating the AMPK/Nrf2 Pathway.

IF 2.3 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM
International Journal of Endocrinology Pub Date : 2025-01-21 eCollection Date: 2025-01-01 DOI:10.1155/ije/4473803
Song Xue, Wei Fan, Qingping Li, Hong Huang, Yibo Tang, Min Wu
{"title":"Puerarin Attenuates Podocyte Damage in Mice With Diabetic Kidney Disease by Modulating the AMPK/Nrf2 Pathway.","authors":"Song Xue, Wei Fan, Qingping Li, Hong Huang, Yibo Tang, Min Wu","doi":"10.1155/ije/4473803","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> This study aimed to investigate the potential mechanisms of puerarin in alleviating diabetic nephropathy (DKD) in mice. <b>Method:</b> The DKD model was induced by multiple low-dose injections of streptozotocin (STZ) and a high-sugar and high-fat diet in male C57BL/6J mice. After confirming the onset of DKD, mice were given irbesartan, distilled water, or different concentrations of puerarin (40 and 80 mg/kg/d) by gavage for 8 weeks. HE staining and PAS staining were adopted to assess the pathological changes in the kidney tissues. Meanwhile, the levels of superoxide dismutase, catalase, creatinine, and cystatin C in the serum and the urine albumin and creatinine were measured, and the renal indices as well as the urinary albumin-to-creatinine ratio (UACR) were calculated. The changes of podocin and protein expression levels associated with AMPK/Nrf2 signaling pathway were evaluated by western blot. <b>Results:</b> Puerarin significantly reduced the level of fasting blood glucose, renal index, glomerular mesangial expansion index, renal function, and oxidative stress induced by STZ (<i>p</i> < 0.05). The pathological injuries in kidney tissues were also alleviated. Furthermore, we demonstrated that the expression level of podocin and protein related to the AMPK/Nrf2 signaling pathway was also decreased significantly by the treatment of puerarin. At the same time, the efficacy of puerarin in the treatment of DKD was better than that of irbesartan, and the treatment effect of the high-dose group (80 mg/kg/d) was also significantly better than that of the low-dose group (40 mg/kg/d). <b>Conclusion:</b> Puerarin could attenuate the severity of DKD and protect the podocyte in mice in a dose-dependent way. Also, it might be performed by regulating the AMPK/Nrf2 pathway. These findings may provide a theoretical basis for updating the clinical management of DKD.</p>","PeriodicalId":13966,"journal":{"name":"International Journal of Endocrinology","volume":"2025 ","pages":"4473803"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774570/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/ije/4473803","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: This study aimed to investigate the potential mechanisms of puerarin in alleviating diabetic nephropathy (DKD) in mice. Method: The DKD model was induced by multiple low-dose injections of streptozotocin (STZ) and a high-sugar and high-fat diet in male C57BL/6J mice. After confirming the onset of DKD, mice were given irbesartan, distilled water, or different concentrations of puerarin (40 and 80 mg/kg/d) by gavage for 8 weeks. HE staining and PAS staining were adopted to assess the pathological changes in the kidney tissues. Meanwhile, the levels of superoxide dismutase, catalase, creatinine, and cystatin C in the serum and the urine albumin and creatinine were measured, and the renal indices as well as the urinary albumin-to-creatinine ratio (UACR) were calculated. The changes of podocin and protein expression levels associated with AMPK/Nrf2 signaling pathway were evaluated by western blot. Results: Puerarin significantly reduced the level of fasting blood glucose, renal index, glomerular mesangial expansion index, renal function, and oxidative stress induced by STZ (p < 0.05). The pathological injuries in kidney tissues were also alleviated. Furthermore, we demonstrated that the expression level of podocin and protein related to the AMPK/Nrf2 signaling pathway was also decreased significantly by the treatment of puerarin. At the same time, the efficacy of puerarin in the treatment of DKD was better than that of irbesartan, and the treatment effect of the high-dose group (80 mg/kg/d) was also significantly better than that of the low-dose group (40 mg/kg/d). Conclusion: Puerarin could attenuate the severity of DKD and protect the podocyte in mice in a dose-dependent way. Also, it might be performed by regulating the AMPK/Nrf2 pathway. These findings may provide a theoretical basis for updating the clinical management of DKD.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Endocrinology
International Journal of Endocrinology ENDOCRINOLOGY & METABOLISM-
CiteScore
5.20
自引率
0.00%
发文量
147
审稿时长
1 months
期刊介绍: International Journal of Endocrinology is a peer-reviewed, Open Access journal that provides a forum for scientists and clinicians working in basic and translational research. The journal publishes original research articles, review articles, and clinical studies that provide insights into the endocrine system and its associated diseases at a genomic, molecular, biochemical and cellular level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信