Freshwater ecotoxicity characterization factors for PFASs.

IF 3 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Rahul Aggarwal
{"title":"Freshwater ecotoxicity characterization factors for PFASs.","authors":"Rahul Aggarwal","doi":"10.1093/inteam/vjae013","DOIUrl":null,"url":null,"abstract":"<p><p>This research aims to address the data gaps in freshwater ecotoxicological characterization factors (CFs) for per- and polyfluoroalkyl substances (PFASs). These CFs are essential for incorporating the ecotoxicity impacts of PFAS emissions into life cycle assessments (LCAs). This study has three primary objectives: first, to calculate a comprehensive set of experimental aquatic ecotoxicity CFs for PFASs utilizing the USEtox model (version 2.13); second, to compare these newly derived CFs with those generated using the PFAS-adapted USEtox model; and finally, to test the hypothesis concerning a potential correlation between CFs and effect factors (EFs) with the number of perfluorinated carbons in PFASs. In this study, 367 PFASs were selected from the CompTox Chemicals Dashboard PFAS suspect lists and REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) registration dossiers. Experimental ecotoxicity data were extracted from CompTox Version 2.1.1 and REACH. Using both the USEtox model (version 2.13) and the PFAS-adapted USEtox model, CFs were calculated for 367 PFASs. Of these, 237 CFs were newly calculated using the HC20EC10eq-based methodology, enriching the representation of PFASs in LCA studies. The analysis revealed no correlation between the number of perfluorinated carbons and the calculated EFs and CFs using the USEtox models. This study covers only a small portion of the extensive list of millions of PFASs in PubChem, primarily due to data constraints and scarcity. Discrepancies between CFs generated by USEtox and PFAS-adapted USEtox are attributed to variations in foundational fate and exposure factor calculation methodologies, whereas ecotoxicity factors remained consistent. Consequently, it is suggested that CFs for PFASs are dependent on the modeling approach and require regular updates with the latest data to ensure accuracy and relevance.</p>","PeriodicalId":13557,"journal":{"name":"Integrated Environmental Assessment and Management","volume":"21 1","pages":"208-219"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Environmental Assessment and Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/inteam/vjae013","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This research aims to address the data gaps in freshwater ecotoxicological characterization factors (CFs) for per- and polyfluoroalkyl substances (PFASs). These CFs are essential for incorporating the ecotoxicity impacts of PFAS emissions into life cycle assessments (LCAs). This study has three primary objectives: first, to calculate a comprehensive set of experimental aquatic ecotoxicity CFs for PFASs utilizing the USEtox model (version 2.13); second, to compare these newly derived CFs with those generated using the PFAS-adapted USEtox model; and finally, to test the hypothesis concerning a potential correlation between CFs and effect factors (EFs) with the number of perfluorinated carbons in PFASs. In this study, 367 PFASs were selected from the CompTox Chemicals Dashboard PFAS suspect lists and REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) registration dossiers. Experimental ecotoxicity data were extracted from CompTox Version 2.1.1 and REACH. Using both the USEtox model (version 2.13) and the PFAS-adapted USEtox model, CFs were calculated for 367 PFASs. Of these, 237 CFs were newly calculated using the HC20EC10eq-based methodology, enriching the representation of PFASs in LCA studies. The analysis revealed no correlation between the number of perfluorinated carbons and the calculated EFs and CFs using the USEtox models. This study covers only a small portion of the extensive list of millions of PFASs in PubChem, primarily due to data constraints and scarcity. Discrepancies between CFs generated by USEtox and PFAS-adapted USEtox are attributed to variations in foundational fate and exposure factor calculation methodologies, whereas ecotoxicity factors remained consistent. Consequently, it is suggested that CFs for PFASs are dependent on the modeling approach and require regular updates with the latest data to ensure accuracy and relevance.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Integrated Environmental Assessment and Management
Integrated Environmental Assessment and Management ENVIRONMENTAL SCIENCESTOXICOLOGY&nbs-TOXICOLOGY
CiteScore
5.90
自引率
6.50%
发文量
156
期刊介绍: Integrated Environmental Assessment and Management (IEAM) publishes the science underpinning environmental decision making and problem solving. Papers submitted to IEAM must link science and technical innovations to vexing regional or global environmental issues in one or more of the following core areas: Science-informed regulation, policy, and decision making Health and ecological risk and impact assessment Restoration and management of damaged ecosystems Sustaining ecosystems Managing large-scale environmental change Papers published in these broad fields of study are connected by an array of interdisciplinary engineering, management, and scientific themes, which collectively reflect the interconnectedness of the scientific, social, and environmental challenges facing our modern global society: Methods for environmental quality assessment; forecasting across a number of ecosystem uses and challenges (systems-based, cost-benefit, ecosystem services, etc.); measuring or predicting ecosystem change and adaptation Approaches that connect policy and management tools; harmonize national and international environmental regulation; merge human well-being with ecological management; develop and sustain the function of ecosystems; conceptualize, model and apply concepts of spatial and regional sustainability Assessment and management frameworks that incorporate conservation, life cycle, restoration, and sustainability; considerations for climate-induced adaptation, change and consequences, and vulnerability Environmental management applications using risk-based approaches; considerations for protecting and fostering biodiversity, as well as enhancement or protection of ecosystem services and resiliency.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信