The temperate forest phyllosphere and rhizosphere microbiome: a case study of sugar maple.

IF 4 2区 生物学 Q2 MICROBIOLOGY
Frontiers in Microbiology Pub Date : 2025-01-15 eCollection Date: 2024-01-01 DOI:10.3389/fmicb.2024.1504444
Morgane Enea, Jacob Beauregard, Tonia De Bellis, Maria Faticov, Isabelle Laforest-Lapointe
{"title":"The temperate forest phyllosphere and rhizosphere microbiome: a case study of sugar maple.","authors":"Morgane Enea, Jacob Beauregard, Tonia De Bellis, Maria Faticov, Isabelle Laforest-Lapointe","doi":"10.3389/fmicb.2024.1504444","DOIUrl":null,"url":null,"abstract":"<p><p>The interactions between sugar maple (<i>Acer saccharum</i>, Marshall) and its microbial communities are important for tree fitness, growth, and establishment. Despite recent progress in our understanding of the rhizosphere and phyllosphere microbial communities of sugar maple, many outstanding knowledge gaps remain. This review delves into the relationships between sugar maple and its microbes, as climate change alters plant species distributions. It highlights the multifaceted roles of key microbes, such as arbuscular mycorrhizal (AM) fungi and pathogens, in affecting the distribution and establishment of sugar maple in novel habitats. Furthermore, this review examines how microbial communities in different compartments contribute to tree fitness. Finally, it explores how microbial dispersal and altered species interactions under changing environmental conditions can affect sugar maple's ability to migrate beyond its current range, emphasizing the different scenarios associated with such shifts. In the rhizosphere, AM fungi are known for their roles in nutrient acquisition and improving stress tolerance. Yet, key questions remain about how these fungi interact with other microbes, how soil chemistry and climate change alter these interactions, and how the presence of beneficial microbes influences sugar maple's establishment. Additionally, the role of dark septate endophytes (DSE) in sugar maple's fitness remains underexplored, emphasizing the need for more research on their diversity and functions. In the phyllosphere, microbial communities are subject to shifts due to rising global change, with potential impacts on sugar maple's fitness. These changes may influence the tree's resistance to pathogens, tolerance to environmental stress, and overall health. Yet, our understanding of these interactions relies mostly on short-read sequencing methods targeting marker genes (e.g., 16S, ITS, 18S), which often fail to identify microbes at the species level. Limitations in molecular techniques and poor microbial reference databases hinder our ability to fully characterize tree-associated microbial diversity and functions. Future research should thus prioritize advanced molecular tools such as shotgun, hybrid, or long-read sequencing. Controlled experiments are also needed to establish causal links between sugar maple fitness and microbial communities, and to study whether microbial communities change throughout the tree's lifespan.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":"15 ","pages":"1504444"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776870/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2024.1504444","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The interactions between sugar maple (Acer saccharum, Marshall) and its microbial communities are important for tree fitness, growth, and establishment. Despite recent progress in our understanding of the rhizosphere and phyllosphere microbial communities of sugar maple, many outstanding knowledge gaps remain. This review delves into the relationships between sugar maple and its microbes, as climate change alters plant species distributions. It highlights the multifaceted roles of key microbes, such as arbuscular mycorrhizal (AM) fungi and pathogens, in affecting the distribution and establishment of sugar maple in novel habitats. Furthermore, this review examines how microbial communities in different compartments contribute to tree fitness. Finally, it explores how microbial dispersal and altered species interactions under changing environmental conditions can affect sugar maple's ability to migrate beyond its current range, emphasizing the different scenarios associated with such shifts. In the rhizosphere, AM fungi are known for their roles in nutrient acquisition and improving stress tolerance. Yet, key questions remain about how these fungi interact with other microbes, how soil chemistry and climate change alter these interactions, and how the presence of beneficial microbes influences sugar maple's establishment. Additionally, the role of dark septate endophytes (DSE) in sugar maple's fitness remains underexplored, emphasizing the need for more research on their diversity and functions. In the phyllosphere, microbial communities are subject to shifts due to rising global change, with potential impacts on sugar maple's fitness. These changes may influence the tree's resistance to pathogens, tolerance to environmental stress, and overall health. Yet, our understanding of these interactions relies mostly on short-read sequencing methods targeting marker genes (e.g., 16S, ITS, 18S), which often fail to identify microbes at the species level. Limitations in molecular techniques and poor microbial reference databases hinder our ability to fully characterize tree-associated microbial diversity and functions. Future research should thus prioritize advanced molecular tools such as shotgun, hybrid, or long-read sequencing. Controlled experiments are also needed to establish causal links between sugar maple fitness and microbial communities, and to study whether microbial communities change throughout the tree's lifespan.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
9.60%
发文量
4837
审稿时长
14 weeks
期刊介绍: Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信