Costly traits in a dynamic world: trait responses to fine-scale varying environment differ according to selection pressures in a tropical lizard.

IF 3.1 2区 环境科学与生态学 Q2 ECOLOGY
Evolution Pub Date : 2025-01-30 DOI:10.1093/evolut/qpaf018
Gokul Valiya Parambil, Kavita Isvaran
{"title":"Costly traits in a dynamic world: trait responses to fine-scale varying environment differ according to selection pressures in a tropical lizard.","authors":"Gokul Valiya Parambil, Kavita Isvaran","doi":"10.1093/evolut/qpaf018","DOIUrl":null,"url":null,"abstract":"<p><p>Under current climate change patterns, rapidly changing environments can impose strong selection on traits. Costly traits that require heavy investment and strongly affect fitness may be particularly vulnerable to such changes. Despite organisms experiencing dynamic environments, our knowledge of costly trait response is limited as longitudinal studies across generations are rare. Using a long-term 11-generation dataset, we examined how fine-scale spatial and temporal variation in ecological and demographic conditions modify costly traits, specifically positive allometry in morphological traits under different selection pressures, in Psammophilus dorsalis, a short-lived socially polygynous lizard. We comprehensively measured males and females across non-overlapping generations and space and quantified fine-scale variation in key ecological and demographic parameters. Positive allometry in male head width (under sexual selection) varied dramatically over generations and space. Limited rainfall, harsh temperatures, and greater competition promoted positive allometry in male head width. In stark contrast, positive allometry in female interlimb length (under fecundity selection) only weakly correlated with environmental conditions. We demonstrate that costly traits are sensitive to changing environments depending on the underlying selection pressure, with sexually selected traits showing larger effects in tropical lizards. Future climatic predictions, indicating accelerated warming and altered rainfall, can strongly impact phenotypes in tropical lizards.</p>","PeriodicalId":12082,"journal":{"name":"Evolution","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/evolut/qpaf018","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Under current climate change patterns, rapidly changing environments can impose strong selection on traits. Costly traits that require heavy investment and strongly affect fitness may be particularly vulnerable to such changes. Despite organisms experiencing dynamic environments, our knowledge of costly trait response is limited as longitudinal studies across generations are rare. Using a long-term 11-generation dataset, we examined how fine-scale spatial and temporal variation in ecological and demographic conditions modify costly traits, specifically positive allometry in morphological traits under different selection pressures, in Psammophilus dorsalis, a short-lived socially polygynous lizard. We comprehensively measured males and females across non-overlapping generations and space and quantified fine-scale variation in key ecological and demographic parameters. Positive allometry in male head width (under sexual selection) varied dramatically over generations and space. Limited rainfall, harsh temperatures, and greater competition promoted positive allometry in male head width. In stark contrast, positive allometry in female interlimb length (under fecundity selection) only weakly correlated with environmental conditions. We demonstrate that costly traits are sensitive to changing environments depending on the underlying selection pressure, with sexually selected traits showing larger effects in tropical lizards. Future climatic predictions, indicating accelerated warming and altered rainfall, can strongly impact phenotypes in tropical lizards.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolution
Evolution 环境科学-进化生物学
CiteScore
5.00
自引率
9.10%
发文量
0
审稿时长
3-6 weeks
期刊介绍: Evolution, published for the Society for the Study of Evolution, is the premier publication devoted to the study of organic evolution and the integration of the various fields of science concerned with evolution. The journal presents significant and original results that extend our understanding of evolutionary phenomena and processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信