To what extent does status epilepticus contribute to brain damage in the developmental and epileptic Encephalopathies.

IF 2.3 3区 医学 Q2 BEHAVIORAL SCIENCES
Nicola Specchio, Stéphane Auvin
{"title":"To what extent does status epilepticus contribute to brain damage in the developmental and epileptic Encephalopathies.","authors":"Nicola Specchio, Stéphane Auvin","doi":"10.1016/j.yebeh.2025.110271","DOIUrl":null,"url":null,"abstract":"<p><p>This paper is based on a presentation made at the 9th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures in April 2024. Status Epilepticus (SE) is a neurological emergency involving prolonged seizures that disrupt brain function and may cause severe, long-term neurological damage. Developmental and Epileptic Encephalopathies (DEEs), a group of severe genetic disorders with early-onset epilepsy, often exhibit SE episodes that compound their inherent cognitive and developmental challenges. In patients with DEEs, SE may intensify excitotoxicity, metabolic strain, and neuroinflammatory processes, exacerbating developmental delays and cognitive deficits. SE episodes in DEEs frequently resist conventional anti-seizure medications, posing heightened risks of progressive neurological decline and mortality. This paper explores how SE contributes to worsening neurodevelopmental outcomes in DEEs, particularly through sustained structural and functional brain alterations observed in human neuroimaging and animal models. Findings from clinical studies and neuroimaging highlight SE's role in structural damage, including cortical atrophy, hippocampal sclerosis, and gray matter loss. Rodent models replicate SE through chemical or electrical induction, providing insights into SE-induced neurodegeneration, network reorganization, especially in critical areas like the hippocampus, which is more known, however few of scientists look that much outside it. The models reveal a progressive cycle where recurrent SE episodes increase brain excitability, predisposing to further seizures and cumulative developmental impairment. Moreover, genetic animal models of DEEs suggest that early-life seizures exacerbate the severity of the epilepsy phenotype and neurocognitive deficits. This paper underscores the need for advanced, individualized therapies to manage SE in DEE patients and prevent recurrence, aiming to minimize long-term neurological and developmental sequelae.</p>","PeriodicalId":11847,"journal":{"name":"Epilepsy & Behavior","volume":"164 ","pages":"110271"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsy & Behavior","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.yebeh.2025.110271","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is based on a presentation made at the 9th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures in April 2024. Status Epilepticus (SE) is a neurological emergency involving prolonged seizures that disrupt brain function and may cause severe, long-term neurological damage. Developmental and Epileptic Encephalopathies (DEEs), a group of severe genetic disorders with early-onset epilepsy, often exhibit SE episodes that compound their inherent cognitive and developmental challenges. In patients with DEEs, SE may intensify excitotoxicity, metabolic strain, and neuroinflammatory processes, exacerbating developmental delays and cognitive deficits. SE episodes in DEEs frequently resist conventional anti-seizure medications, posing heightened risks of progressive neurological decline and mortality. This paper explores how SE contributes to worsening neurodevelopmental outcomes in DEEs, particularly through sustained structural and functional brain alterations observed in human neuroimaging and animal models. Findings from clinical studies and neuroimaging highlight SE's role in structural damage, including cortical atrophy, hippocampal sclerosis, and gray matter loss. Rodent models replicate SE through chemical or electrical induction, providing insights into SE-induced neurodegeneration, network reorganization, especially in critical areas like the hippocampus, which is more known, however few of scientists look that much outside it. The models reveal a progressive cycle where recurrent SE episodes increase brain excitability, predisposing to further seizures and cumulative developmental impairment. Moreover, genetic animal models of DEEs suggest that early-life seizures exacerbate the severity of the epilepsy phenotype and neurocognitive deficits. This paper underscores the need for advanced, individualized therapies to manage SE in DEE patients and prevent recurrence, aiming to minimize long-term neurological and developmental sequelae.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Epilepsy & Behavior
Epilepsy & Behavior 医学-行为科学
CiteScore
5.40
自引率
15.40%
发文量
385
审稿时长
43 days
期刊介绍: Epilepsy & Behavior is the fastest-growing international journal uniquely devoted to the rapid dissemination of the most current information available on the behavioral aspects of seizures and epilepsy. Epilepsy & Behavior presents original peer-reviewed articles based on laboratory and clinical research. Topics are drawn from a variety of fields, including clinical neurology, neurosurgery, neuropsychiatry, neuropsychology, neurophysiology, neuropharmacology, and neuroimaging. From September 2012 Epilepsy & Behavior stopped accepting Case Reports for publication in the journal. From this date authors who submit to Epilepsy & Behavior will be offered a transfer or asked to resubmit their Case Reports to its new sister journal, Epilepsy & Behavior Case Reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信